
LNIS Vol. 7     RIMMA  Risk Information Management, Risk Models, and Applications            1 

Assessment of Social Vulnerability to Flooding in a Estuarine 
Context 

Pedro P. dos Santos1, Alexandre O. Tavares1, André B. Fortunato2, Ana Rilo2, Paula Freire2  

1 Centre for Social Studies of the University of Coimbra 
Colégio de S. Jerónimo, Ap. 3087, 3000-995 Coimbra, PORTUGAL 

pedrosantos@ces.uc.pt, atavares@ci.uc.pt 

2 National Civil Engineering Laboratory  
Av. Brasil 101, 1700-066 Lisboa, PORTUGAL 

afortunato@lnec.pt, arilo@lnec.pt, pfreire@lnec.pt 

Abstract. This paper describes the methodology and first results of a social vulnerability assessment in an 
estuarine area in Portugal. The nature of the hazard – marginal flooding in an estuarine context by tide, 
storm surge and urban drainage effect – and the scale adopted, posed interesting challenges to the applica-
tion of the methodology proposed in the Social Vulnerability Index (SoVI®), namely the selection of the 
unit of analysis and the identification of the most adequate and pertinent initial input variables. Results in-
dicate that the characteristics of the urban context, population age, family structure, economic power and 
mobility are the most explicative components of the social vulnerability distribution patterns in the Tagus 
estuary. Scale, quality and diversity of input data are key points in the interpretative capacity that can be 
achieved by the analysis of the vulnerability components. 
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1   Introduction 

Social vulnerability (SV) is a complex concept that can be summarized as a preexisting condition of individu-
als and communities that influences their preparation, response and recovery from hazard events [1], resulting 
both from social inequalities and place inequalities [2].  

Vulnerability assessments must be conducted considering that vulnerability is as an “integral part of the causal 
chain of risk” and that its reduction is a cost-effective strategy of risk management [3]. Understanding SV is 
crucial in the development of disaster mitigation plans and policies. In fact, SV sources are not only addressed 
via civil protection action, but also require a broader concerted action between practitioners of distinct public 
and private sectors and fields such as health, education, social assistance, economy, spatial planning and 
transportation, just to mention the most relevant. Understanding SV is, therefore, of key importance in any risk 
governance process. 

The development of indexes as a way of quantifying SV serves the purpose of simplifying the multidimen-
sional complexity of SV into a single metric [4]. Since the Social Vulnerability Index (SoVI®) was proposed 
as a measure of expressing the potential for loss to environmental hazards [2], research on this specific type of 
vulnerability has expanded both conceptually and geographically. In Portugal, for example, a new SV index 
was proposed which considers the components of criticality and support capability, being the former the “en-
semble of individuals’ characteristics and behaviors that may contribute to the system’s rupture” and the later 
the “set of territorial infrastructure that enables the community to react in case of disaster” [5, p. 446]. The 
SoVI® was recently applied in Portugal to a set of 149 civil parishes of the Greater Lisbon, where the final 
model was performed with 38 variables, after multicolinearity elimination [6]. 

SV explicative variables are related to concepts such as socioeconomic status, gender, race and ethnicity, age, 
community’s economic wealth, rural/urban dichotomy, household characteristics, infrastructure and lifelines, 
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household ownership and occupation, family structure, population change, access to medical services, educa-
tion, social dependence and special needs populations [2]. A major challenge when attempting to characterize 
SV in a given area consists in finding the best balance between the scale of analysis and the adequacy, depth 
and pertinence of the variables that aim to represent each of those concepts. 

In this study, an adapted SV index is proposed that considers the nature of the hazard – marginal flooding in 
an estuarine context under storm surge conditions – in the Tagus river estuary. The methodology and first 
results of the SV assessment are presented and discussed. The study is integrated in the research project 
“MOLINES - Modeling floods in estuaries: from the hazard to the critical management” whose objectives 
include (i) the improvement on the knowledge about flooding processes under storm surge processes, com-
bined with tide effect and urban drainage for different climate scenarios, (ii) the assessment of exposed ele-
ments, vulnerability and risk (iii) and the definition of a coordinated strategy for flood risk management. 

The Tagus estuary is located in Portugal, covering partially 11 municipalities, including the capital, Lisbon, 
and its metropolitan area (Fig. 1). Along with the relevance of social and economic exchanges within and 
between margins, the study area is also sensitive in terms of densely urbanized areas, exposure of critical and 
sensitive infrastructures, and of its ecological functions with part of its upstream area legally protected as a 
natural reserve [7]. 

 

Fig. 1. Geographical context of the study area. Source: Land Use Map 2007 [8]; estuarine and tide data provided by Prof. 
Paula Freire [9]. 

After a description of the methodological procedures that conducted to the final social vulnerability index, the 
paper presents the results, stressing the relevance of analyzing each of the components of SV separately, and 
discusses the major challenges derived from the adopted geographical unit of analysis. 
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2   Methodology 

2.1   Set the scope  

The definition of the inundation and the socioeconomic contexts set the scope for the SV assessment (Fig. 2), 
which followed the methodology proposed in the definition of the social vulnerability index (SoVI®) [2]. This 
methodology is widely applied in several geographical contexts and at different scales. Scale constitutes, in 
fact, a challenging factor in our study given the local and geographically narrow context that an estuarine area 
represents. Being one of the first steps of the process, the selection of the geographical unit consisted therefore 
in a sensitive and crucial task, which would depend on the extension of the flooded area as well as on the so-
cioeconomic characterization.  

An inundation model for the estuarine area was set up for several probabilistic return periods for both present 
and future mean sea levels. Extreme water levels in the estuary were determined following the approach of 
[10], whereby measured sea levels at a nearby coastal station (Cascais, cf. Fig. 1) were statistically analyzed to 
determine synthetic time series associated with specific return periods (20, 100 and 1000 years). Those time 
series were then used to force a circulation model, which describes the hydrodynamics (velocities and water 
elevations), in the estuary [11]. 

The characterization of the socioeconomic dynamics of the estuary’s margins recurred to the analysis of the 
demographic dynamics, analysis of mobility and commuting from home to school and workplace, with par-
ticular emphasis on fluvial transportation between left and right margins and an analysis of potentially affected 
functions in the case of a disaster (elder and childhood infrastructures, commercial and industrial facilities, 
civil protection bodies). 

The understanding of the inundation model and the socioeconomic dynamics constituted intermediate results 
that are not the object of this paper, although they led to the necessity of an approach of the estuary in a 
broader sense, not limited to the hydrologic dimension. Thus, our concept of estuarine area encompasses the 
estuary biophysical and the human dimensions, which means that the boundary of the study area extends 
beyond the limit of the highest astronomical tide line [12], to incorporate also the socioeconomic relations that 
take place along and between estuarine margins. 

 

 

Fig. 2. Framework of the social vulnerability assessment 

2.2 Social vulnerability assessment  

Using a broader concept of estuarine area affected in the definition of the study area and the selection of the 
units of analysis for the SV assessment. Both processes are interdependent since the number of units of analy-
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sis – the SV assessment is based in Principal Component Analysis (PCA) thus requiring a balance between the 
number of units and the number of SV related variables – would depend on the dimension of the study area. 
The options for units of analysis were: the parish (or commune, “freguesia” in Portuguese), the statistical 
block (SB) and the sub-statistical block (S-SB). 

The definition of the study area was supported by the combined application of distinct criteria: (1) framing 
fluvial geomorphology led to the exclusion of areas upstream of the estuary or located in the sea shore; (2) 
from the resulting area, units within a buffer of 1000 meters from the highest astronomical tide line were in-
cluded; (3) as well as those with more than 20% of the area under 10 meters height (a value above the maxi-
mum depth provided by de inundation model); (4) finally, urban connectivity was accounted for in order to 
avoid both the exclusion of relevant urbanized areas and the existence of enclaves. 

The geographical units that fulfilled those criteria are summarized in Table 1. Considering the optimal relation 
between the interpretative capacity provided by the mean area, and the minimum number of units necessary to 
allow the application of the SV model, the statistical block was selected. In fact, the number of parishes is too 
low to perform PCA considering that previous SV assessments – both from the authors and as well as those 
presented in the scientific literature (e.g., [1, 6, 13])   – normally recur to between 20 and 40 variables, while 
the number of S-SB is adequate for PCA but the interpretative capacity is reduced because of the high hetero-
geneity and dispersion of areas. For example, frequently a sub-statistical block can consist of a roundabout or 
of a single building. However, S-SB will be used in further steps of the MOLINES project regarding local risk 
assessments to take place in two selected sites. In summary, the combined application of the above criteria 
resulted in the selection of 1147 statistical blocks with a mean area of 0.58 km2. 

Statistical blocks are delimited by the water level in the vertical datum (Mean Sea Level) in the estuarine side. 
In our study, we opted for considering as inland only the areas above the highest astronomical tide line which 
required the clipping of SB polygons between this limit and the water level limit.  

Table 1. Options for units of analysis in SV assessment and their distribution by municipality. Source: BGRI [14]. 

Municipalities Area 
(km2) 

Parishes Blocks Sub-blocks 

No. Mean area 
(km2) No. Mean area 

(km2) No. Mean area 
(km2) 

Alcochete 88.37 3 29.46 27 3.27 311 0.28 
Almada 17.09 8 2.14 118 0.14 492 0.03 
Barreiro 21.66 8 2.71 113 0.19 626 0.03 

Benavente 291.88 1 291.88 2 145.94 31 9.42 
Lisboa 19.49 31 0.63 266 0.07 1239 0.02 
Loures 33.13 12 2.76 116 0.29 969 0.03 
Moita 19.56 6 3.26 86 0.23 523 0.04 

Montijo 34.19 4 8.55 52 0.66 695 0.05 
Oeiras 12.34 6 2.06 119 0.10 669 0.02 
Seixal 28.37 5 5.67 144 0.20 681 0.04 

V. F. Xira 104.32 8 13.04 104 1.00 763 0.14 
Total study 

area 670.39 92 7.29 1147 0.58 6999 0.10 

 

The selection of variables is the next step in SV assessments. The more dimensions of SV are represented the 
more accurate and holistic will the understanding of vulnerability location, sources and processes be. In our 
study, an initial set of 126 variables was considered. Table 2 describes the source, the geographical aggrega-
tion level, the dimension of SV represented and the number of initial input variables by source. Most variables 
are provided by the 2011 Population Census, performed by the National Statistics Institute (INE). 
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Table 2. Characteristics of the initial 126 input variables considered in the SV assessment 

Source Aggregation Dimension of SV represented by the variables No. 

Population Census Sub-statistical 
block 

Age, gender, education, housing, employment, economic 
power, mobility and commutation 76 

Population Census Parish 
Particular features of SV dimensions (mobility and 

commutation, persons with special needs, immigration, 
housing accessibility, homeless,    

27 

Social Chart Parish Child, youth, adult and community social support (no. of 
beneficiaries and equipments) 9 

Official mapping 
institute Polygonal Land use 7 

Civil protection 
national authority 

Point, linear and 
polygonal data 

Educational, health, transportation, civil protection, road 
network and elderly equipments and infrastructures 6 

Fluvial transport 
company Point data Passengers between fluvial stations 1 

 

Table 2 shows that some particular and relevant dimensions of social vulnerability – immigration, homeless 
persons and persons with special needs, among others – are only represented at the parish level. In such cases, 
the value that the parish presents was applied to all the SB inside its limits. The following steps of the social 
vulnerability assessment are (Fig. 2): (1) data collection and integration; (2) normalization of variables to the 
z-score; (3) test of multicollinearity between input variables; (4) execution of Principal Component Analysis 
(PCA); (5) interpretation of component groups and attribution of their cardinality, according to their role in 
explaining SV; (6) sum of component scores without weighting; (7) linear transformation of values to an in-
terval between 0 and 1; (8) cartographic representation of the score of each statistical block according to the 
standard deviation (SD). 

Regarding the third step, several methods are applied to the 126 initial variables in order to select the most 
robust ones. The first method consists of calculating the Pearson coefficient’s correlation between all the pairs 
of variables, deciding upon which of the variable in the pairs that present a correlation higher than 0.7 is more 
relevant and easily interpreted in terms of SV. A typical example is the strong correlation between the ageing 
index and the percentage of people over 65 years old, where the latter is usually preferred. Also, the variables 
that present a communality extraction value1

The fifth step is the one requiring the more interpretative capacity. The name of the component is attributed 
considering the variables with load superior to 0.5 or inferior to -0.5 – generally, two to six variables in each 
component. The signals of these same variables also allow defining the cardinality of the component, which is 
important to verify if the score in each geographical unit is in accordance with the sign of the component. For 
example, if the variable “% of population with higher education” presents a positive loading in a given com-
ponent, the score of all SB in that component must be inverted so that high percentages of population with 
higher education can correspond to low levels of SV. Following an iterative application of steps (3) to (5), 34 
variables were selected to which the steps (4) to (8) were performed. 

 below 0.6 are disregarded. These operations are iteratively ex-
ecuted and the general robustness of the set of data – and its suitability to PCA – is monitored through the 
verification of the Kaiser-Meyer-Olkin (KMO) measure which must be higher than 0.8 so it can be classified 
as “good” [15]. 

The sixth step is an assumption made from the beginning by the authors who developed the SoVI® [2] and 
followed since then in other researches (e.g. [16]). In fact, despite the different percentage of variance ex-
plained by each component, one cannot assume that components should be weighted unevenly. The linear 
transformation performed in the seventh step was introduced in the model presented in [11] because, albeit the 
fact that z-scores are used thus presenting a mean value equal to zero, the range of values between components 
                                                           
1 A communality value of 0.6 means that 60% of the variable’s variance is being explained by the number of extracted 

components. Following the SoVI® methodology, an Eigenvalue of 1 is adopted in order to extract the principal compo-
nents. 
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differs significantly. Therefore, the transformation would allow for an easier comparison between the scores. 
The outputs consist in cartographic and tabular data for each of the variables considered as initial input data, 
each of the PCA components and for the composite SV index. 

3   Results 

Beginning with an initial set of 126 variables, PCA was performed with 34 (Table 3), all of them with com-
munality extraction higher to 0.6, and a resulting KMO measure of 0.813. Initially, 76 and 27 variables were 
extracted from Census data at the SB and parish levels, respectively (cf. Table 2). From the 34 final variables, 
22 come from the Census data at the SB level and 8 at the parish level. One can conclude that a ratio of 2.82 
and 2.75 was obtained respectively for the relation between initial and final Census derived variables at both 
levels, which may indicate that the decision of including specific and complementary variables at the parish 
level was positive, and did not undermine the robustness of the set of data. 

Table 3. The 34 variables used in the social vulnerability assessment in the Tagus estuary. 

Code  Description (unit) 
Ed_ne_repa  Buildings needing repair (%)  
Desl_auto  Resident population that uses car as a regular means of transport (%)  
Fam_unipe  Housing units with only one member (%)  
Pop_1_difi  Resident population with at least one difficulty (%)  
Ed_ate1919  Buildings built before 1919 (%)  
AlojArrend  Renter-occupied housing units (%)  
Fam_monopa  Monoparental families (%)  
Ed_1971a11  Buildings built between 1971 and 2011 (%)  
Pop_15_24  Resident population between 15 and 24 years old (%)  
Fa_c_5mais  Families with 5 or more members (%)  
In_freq_sec  Resident population attending secondary school (%)  
Fa_dim_med  Mean family size (no. of individuals)  
In_est_mun  Resident population attending secondary education in the municipality of residence (%)  
Almais200m  Housing units with an area higher than 200 m2 (%)  
In_sup_co  Resident population with higher education completed (%)  
Al_50_100m  Housing units with an area between 50 m2 and 100 m2 (%)  
Al_5maisDi  Housing units with 5 or more rooms (%)  
In_3bas_co  Resident population with 3rd. cycle of primary education completed (%)  
Mov_pend  Mean duration of commutation time (min)  
SecUsaBarco  Employed or studying resident population that potentially uses fluvial transportation (%)  
Ed_pre_esc  Resident population between 3 and 5 years old attending pre-primary education (%)  
In_et_mun  Resident population studying or working in the municipality of residence (%) 
Ed_3mais_a  Buildings built structurally to have 3 or more housing units (%)  
Ed_5mai_pi  Buildings with 5 or more floors (%)  
Piso_ed  Floors by building (no. of floors)  
Ed_91a2011  Buildings built between 1991 and 2011 (%)  
Pop_65mais  Resident population over 65 years old (%)  
Al_s_estac  Housing units without parking place (%)  
In_sec_co  Resident population with secundary education completed (%)  
In_nao_ler  Illiterate resident population (%)  
DensRV  Road network density (km/km2)  
DensPop  Population density (no. of residents/km2) 
Ed_km2  Building density (no. of buildings/km2) 
Res_5_mun  Resident population who 5 years before lived in another municipality (%)  



LNIS Vol. 7     RIMMA  Risk Information Management, Risk Models, and Applications            7 

 

Cutting the explicative components at an Eigenvalue of 1.05, a total of eight components is obtained that ex-
plain 75.1% of the total variance (Table 4).  

Table 4. Principal components of social vulnerability in the Tagus estuary. 

Component 
(% variance explained) Signal No. of 

variables Explicative variables (loading > 0.5) 

Degraded urban con-
text with potentially 

conditioned population 
(21.9) 

+ 9 

Buildings needing repair (.820) 
Resident population that uses car as a regular means of 

transport (-.778) 
Housing units with only one member (.699) 

Resident population with at least one difficulty (.667) 
Buildings built before 1919 (.613) 

Renter-occupied housing units (.543) 
Single parent families (.534) 

Buildings built between 1971 and 2011 (-.504) 
Resident population studying or working in the municipality 

of residence (.563) 

Residential urban 
context of families 

with small and young 
children (15.7) 

- 6 

Resident population between 15 and 24 years old (.865) 
Families with 5 or more members (.753) 

Resident population attending secondary school (.737) 
Mean family size (.681) 

Resident population attending secondary education in the 
municipality of residence (.659) 

Resident population over 65 years old (-.537) 

Residential context of 
population with high 

purchasing power 
(10.5) 

- 6 

Housing units with an area higher than 200 m2 (.796) 
Resident population with higher education completed (.696) 

Housing units with an area between 50 m2 and 100 m2 (-
.676) 

Housing units with 5 or more rooms (.650) 
Resident population with 3rd. cycle of primary education 

completed (-.570) 
Housing units without parking place (-.596) 

Population’s mobility 
(9.2) - 4 

Mean duration of commutation time (-.840) 
Employed or studying resident population that potentially 

uses fluvial transportation (-.799) 
Resident population between 3 and 5 years old attending 

pre-primary education (.684) 
Resident population studying or working in the municipality 

of residence (.600) 

Tall buildings and high 
density of households 

(6.5) 
+ 3 

Buildings built structurally to have 3 or more housing units 
(.810) 

Buildings with 5 or more floors (.783) 
Floors by building (.772) 

Old buildings with 
aged population (4.2) + 3 

Buildings built between 1991 and 2011 (-.778) 
Resident population over 65 years old (.674) 
Housing units without parking place (.609) 

Educational level of 
the population (3.9) - 2 

Resident population with secondary education completed 
(.818) 

Illiterate resident population (-.780) 

Population density 
(3.2) + 3 

Road network density (.823) 
Population density (.766) 
Building density (.766) 
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The components extracted from the PCA analysis express diverse dimensions of SV such as population age, 
socioeconomic status, education, employment, mobility and commuting, urban typology, housing conditions, 
family structure and special needs populations. Indeed, complementarily to the analysis of the composite SV 
index, the isolated analysis of each component provides a relevant understanding of the factors influencing 
and differentiating SV geographical patterns [1]. 

In our study, the first four components explain 57.3% of the total variance and refer to: 1 – elder population 
living in old buildings, 2 – large families, 3 – population with high economic power and qualifications, 4 – 
commuting and mobility from home to workplace or school. 

Relative frequencies of SV classes show that 7.7% of the statistical blocks present very high social vulnerabili-
ty, 21.2% present high, 40.3% present moderate, 24.9% present low and 5.9% present very low social vulne-
rability. Population density is not a differentiating factor as equally highly populated settlements are classified 
in both extremes of the classification scale. Older constructions and their respective residents seem to be asso-
ciated with higher SV, as well as areas located near fluvial transportation interfaces. 

 

Fig. 3. Social vulnerability for the Tagus estuary 

Areas a to e in Fig. 3 illustrate local urban zones where the SV classification was analyzed along with the 
expert knowledge on the demographic and socioeconomic contexts of these areas. Place a (Parque das 
Nações) refers to a vibrant and dynamic cultural, residential and economic hub, with new buildings, high eco-
nomic power families and high density lifelines and support infrastructures, resulting in “very low” SV. Place 
b represents generically the so-called “Baixa Pombalina” – after the name of the Marquis of Pombal who 
coordinated the rebuilding of this downtown area after the 1755 Lisbon Earthquake – which is still a vital zone 
in terms of economic, administrative and political activity, although old buildings, aged population and the 
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concentration of fluvial, metro, train and road interfaces make this area “highly” and “very highly” vulnerable, 
particularly to disruptions caused by flooding. Place c (Restelo) refers to a low urban density area, with single-
family houses occupied by high-income families, several of these houses corresponding to embassies, resulting 
in “very low” SV. Place d corresponds to the Seixal old city center, one of the local case studies to be assessed 
in more detail in the next work packages of the project (cf. Figure 4).  Place e corresponds to the “Barreiro” 
built-up area center. This area is marked by highly populated SB, from the middle and lower social classes 
which depend greatly on fluvial transportation for the daily commutation to the work places on the other mar-
gin of the river. This urban area is also characterized by high unemployment rates and aged population, which 
concurs to the classification of “high” and “very high” SV. 

Future work will focus on local study areas, one of them located in the Seixal Bay (Fig. 4). For this study area 
inundation models exist considering 20, 100 and 1000 year return periods, accounting for an estimated sea 
level rise of 1.5 meters. In the Seixal Bay no SB classified with “very high” SV is present, although some 
margins of relevant built-up areas – Seixal, Amora and Laranjeiro – are classified with “high” SV (Fig. 4). 
The figure also illustrates as a SLR of 1.5 meters represents a significant increase in the flooded area in some 
near-shore areas. For the 100-year return period, the SLR scenario would double the flooded area, from 0.78 
km2 to 1.55 km2.  

 

 
Fig. 4. Social vulnerability in the Seixal Bay area and flooding scenarios. 
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4   Discussion and final remarks 

Risk governance strategies should adopt the major objective of promoting a durable reduction in vulnerability. 
Assessment – as one of the pillars of risk governance – is key to the understanding of hazards, the contexts 
where they can occur, and the potential for loss, thus concurring to the adoption of the most efficient and ade-
quate risk management strategies. A balance between conceptual comprehensiveness and geographical detail 
is required so that social vulnerability assessments can be effective tools in risk management. 

The adoption of a local scale posed some methodological challenges, together with the focus on a specific 
hazard. Both - the use of the statistical block as the geographical unit of analysis and the focus on flooding in 
estuaries - required a thorough effort in finding the most adequate and pertinent data, and later, in the interpre-
tation of the results. In fact, the majority of existing studies focus on larger scales such as the region, the mu-
nicipality and the parish. Previous SV assessments at the municipal level, for instance, are based on variables 
that can only be interpreted at that scale of analysis. For example, the variable “percentage of the population 
served by water treatment facilities” can in fact be used to differentiate the municipalities’ vulnerability in 
terms of the water quality that is supplied to the population. The values of that variable are meaningful at that 
administrative level. Nevertheless, this variable can’t be used to differentiate SV at the statistical block. In 
fact, the presence or proximity of such facility in a given SB can play the opposite role, i.e., to be representa-
tive of lower environmental quality – due to noise, smell, landscape degradation, etc. – and thus of higher 
vulnerability. This same conclusion can be extended to other variables normally used in SV assessments. 

A previous application of the SV assessment methodology developed in the CES, for the Central Portugal 
region, using regional and local geographical units of analysis resulted in the identification of local characte-
ristics that can be the basis for specific risk planning strategies [17]. A research on the socioeconomic vulne-
rability to flooding in the coastal area of Germany concluded that, regarding the potential economic impacts, 
risk evaluations result in higher values when assessed at the micro-scale then at the meso-scale and national 
scale [18], which suggests that the accuracy of assessments is scale-dependent.  

On the perspective of data availability, a high number and diversity of variables widely used in the SV litera-
ture are available at the municipal scale, but are scarce at the statistical block level (e.g., cash withdrawal at 
ATM, purchase power, municipal expenses with health, environment and civil protection). Independently of 
these constraints, and given the fact of assessing social vulnerability at the local level, the results obtained so 
far show that the selection of the SB as the unit of analysis proved to be advantageous. Such unit of analysis 
made it possible to distinguish variations in SV between contiguous neighborhoods and even groups of build-
ings. The differences highlighted were verified and confirmed with the support of local municipal technicians 
who have a thorough knowledge of the socioeconomic and biophysical landscape. Regarding the availability 
of data sources, this study highlights the relevance and irreplaceable function of the Census data provided by 
the Statistics Portugal institute (INE).  

The nature of the hazard – flooding in an estuarine context with the effect of storm surge and urban drainage – 
stimulated us to identify specific variables that could be representative of vulnerability dimensions related to 
commutation, highlighting the relevance of the Tagus estuary as a connectivity resource. A regional study with 
a strong focus on local details such as the one presented herein provided a good identification of social vulne-
rability drivers in the Tagus estuary. The wide perspective of vulnerability provided by the eight SV compo-
nents was only made possible by the quality and diversity of input data. 

Social vulnerability assessments come in accordance with the need for long-term estuarine flood risk manage-
ment strategies which focus on mitigation and adaptation to the adverse effects of flood hazards. Considering 
urban and demographic dynamics as drivers of flood damage patterns [19](Santos et al., 2014), social vulne-
rability assessments constitute relevant tools that allow predicting the degree of the impact and the communi-
ties’ capacity to resist and recover from disasters. 
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