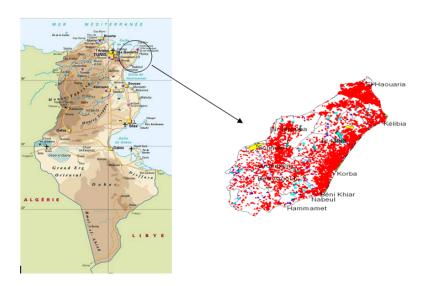
Gestão Integrada de Recursos Hídricos em Aquíferos Costeiros. Projecto de Cooperação Científica e Tecnológica entre a FCT e o Ministry of Scientific Research, Technology and Competency Development da Tunisia.



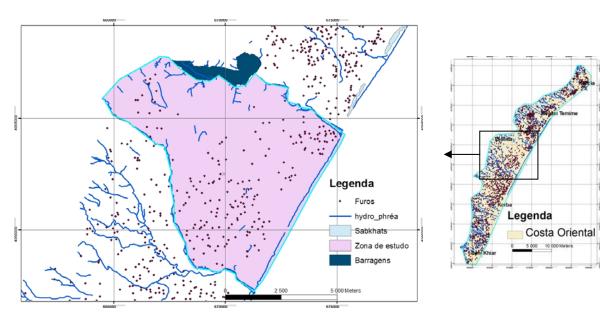
Financiamento: FCT e o Ministry of Scientific Research, Technology and Competency Development da Tunisia

Instituições: LNEC (Portugal) e do *Institut National de Recherche en Génie Rural Eaux et Forêts* (INRGREF), da Tunísia.

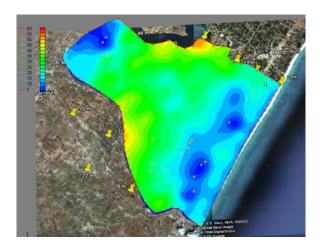
Breve descrição do Projecto

Devido ao problema de intrusão marinha por sobreexploração de água subterrânea, vários cenários de mitigação estão a ser considerados e postos em prática na região de Cap Bon, na Túnisia. Uma das soluções consideradas é a aplicação de recarga artificial com água residual tratada. Esta solução começou a ser implementada em 22 de Dezembro de 2007 em três bacias de recarga a funcionar alternadamente e que recarregam o sistema aquífero com 1 500 m³ diários (segundo fontes recolhidas no local), utilizando água residual com tratamento secundário proveniente da ETAR de "Step of Korba". O remanescente da produção da ETAR é descarregado directamente para o curso de água adjacente.

Legenda – Localização de Cap Bon na Tunísia e localização dos furos existentes no caso em estudo

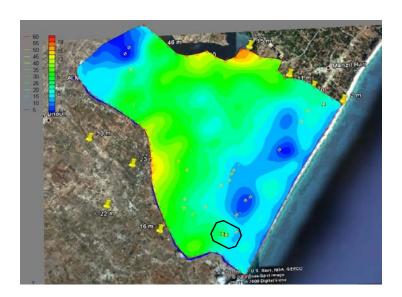


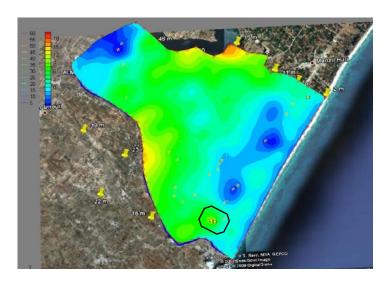
Legenda - Vista geral de uma das três bacias da estação de recarga artificial de Korba localizada no sistema aquífero da Costa Oriental (Cap Bon – Tunísia) com um caudal de alimentação de 1500 m³/dia


O objectivo do processo de modelação com o programa FEMWATER no caso de estudo tunisino foi analisar o comportamento do nível piezométrico do aquífero da Costa Oriental de Cap Bon a vários cenários de recarga artificial.

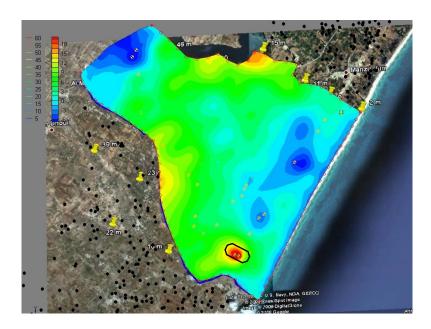
Inicialmente desenvolveu-se uma corrida do modelo em regime estacionário sem aplicação de recarga artificial. De seguida aplicaram-se diferentes cenários de recarga artificial no local da estação que actualmente se encontra em funcionamento (Estação de Korba).

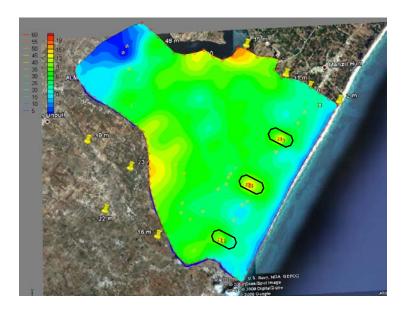
Legenda: Visualização e localização da área de estudo


Resultados da modelação em regime estacionário sem recarga artificial


Legenda: Resultados da corrida em regime estacionário (A amarelo os furos de captação e como imagem de fundo uma imagem retirada do Google Earth). Os valores obtidos pela corrida do modelo são aproximadamente semelhantes aos valores medidos em 2008 por piezómetros na região

Análise de alternativas para a resolução global do problema


Após a identificação das várias características da área em estudo, o passo seguinte da modelação passou pela consideração da entrada adicional de água residual na estação de Korba. Consideraram-se três cenários: i) entrada de 1 500 m³/dia (situação actual), ii) de 3 000 m³/dia e iii) de 6 000 m³/dia. Os resultados obtidos são apresentados nas Figuras seguintes.


Legenda – Resultados da modelação com uma taxa de recarga artificial de 1 500 m³/dia (situação actual)

 $Legenda-Resultados\ da\ modelação\ com\ uma\ taxa\ de\ recarga\ artificial\ de\ 3\ 000\ m^3/dia$

Legenda – Resultados da modelação com uma taxa de recarga artificial de 6000 m³/dia

Legenda – Resultado da modelação da recarga artificial com três locais de recarga artificial e taxas de recarga de 3000 m3/dia em cada local. Solução de recarga artificial tecnicamente viável para a resolução do problema de intrusão marinha da região de Korba.

Principais conclusões

- A recarga artificial actual (1500 m³/dia), apesar de diminuir o problema do rebaixamento do nível piezométrico não o resolve totalmente, visto que perto da estação de recarga existem zonas em que o nível é inferior a 0 metros.
- A recarga artificial com 3000 m³/dia, ou seja, o dobro da actual, permite a resolução total do problema na zona junto à estação de recarga artificial, visto que junto àquela zona todo o nível piezométrico fica superior a 0 metros.
- Em relação à recarga artificial com 6000 m³/dia verifica-se que o valor é demasiado elevado. Não serão necessários valores tão elevados para a resolução do problema na zona contígua à estação de Korba.
- Verifica-se que a aplicação da recarga artificial nos dois novos locais seleccionados, além do local inicial, permite concluir a existência de uma solução de recarga artificial tecnicamente viável para a resolução do problema de intrusão marinha da região de Korba.

Publicações

Gaaloul, N. (2009) - A Modeling study of Seawater Intrusion in the Cap Bon Plain Case Study: Grombalia aquifer and Oriental Coastal aquifer (Cap Bon in the North of Tunisia). Apresentação no âmbito do Projecto de Cooperação Portugal-Tunisia, Lisboa (Portugal), Laboratório Nacional de Engenharia Civil.

Lobo Ferreira, J.P., Oliveira, L. G. S., Rocha, E. J. T., Gaaloul, N. (2009). *Índice de Suporte à escolha de áreas favoráveis à recarga artificial (GABA - IFI): análise das componentes ambientais, sociais e económicas.* Comunicação apresentada no 9º SILUSBA (Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa), Benguela, 28-30 de Outubro. 14 pp.

Terceiro, A., Oliveira, L.G.S., Lobo Ferreira, J.P., Miguel, G., Gaaloul, N., Rocha, E. (2010) - "Modelação

matemática em aquíferos costeiros. Aplicação a dois casos de estudo em países africanos: Angola e Tunísia". 10.º Congresso da Água, Hotel Pestana Alvor Praia, Algarve, 15 pp.