

Outubro de 2021

Auditório do LNEC em Lisboa

SEMINÁRIO

A INVESTIGAÇÃO NOS

LABORATÓRIOS DO ESTADO

E A CONSTRUÇÃO DE UMA

SOCIEDADE SEGURA E

MAIS RESILIENTE

Sistemas de Vigilância e alerta do efeito das temperaturas extremas na saúde da população

Susana Silva

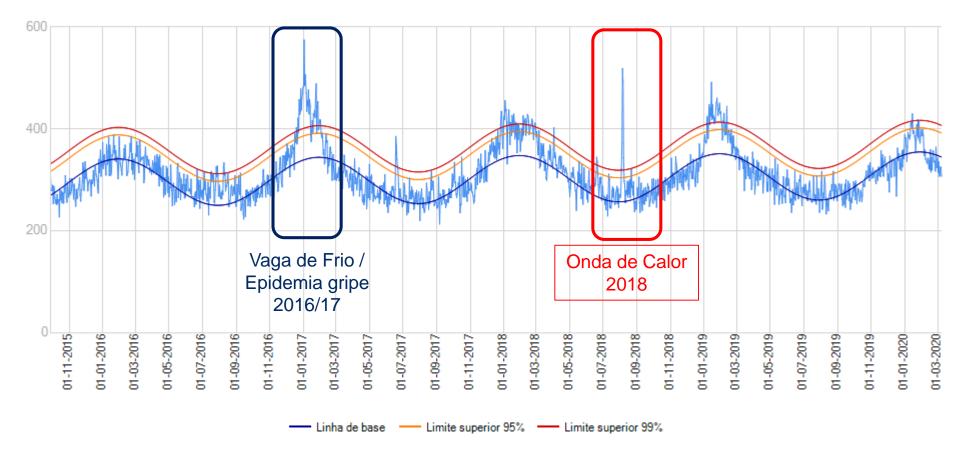
Departamento de Epidemiologia Instituto Nacional de Saúde Doutor Ricardo Jorge

VIGILÂNCIA EM SAÚDE PÚBLICA

Recolha, análise, interpretação, e disseminação sistemática de informação relativa a eventos relacionados com a saúde para ações de Saúde Pública, tendo em vista a redução da morbilidade, mortalidade e a melhoria do estado de saúde das populações. (OMS, 2010)

Sistemas de Vigilância e Alerta em Saúde Pública

(Early Warning Systems [1])


- 1. Previsão do tempo ou evento meteorológico extremo;
- Estimação do impacte ou efeito do evento previsto na saúde humana (mortalidade ou morbilidade);
 - Definição do Aviso ou grau de Alerta;
- 3. Plano de resposta;
 - Monitorização do impacte;
- 4. A avaliação do sistema e seu impacte;
 - Ajuste do sistema.

EFEITOS DO CLIMA NA SAÚDE

Mortalidade Diária em Portugal

28-09-2015 (2015-W40) a 08-03-2020 (2020-W10)

Número de óbitos registados por data do óbito Todas as conservatórias do registo civil informatizadas (SIRIC/IRN e IGFEJ/MJ)

EFEITOS DO CLIMA NA SAÚDE

Prevê-se além do aumento da temperatura média, um aumento de episódios extremos em número de ocorrências, duração e intensidade [1].

- Ondas de calor [2] → Períodos de calor extremo
 - Óbitos por insolação
 - Aumento da mortalidade por doenças circulatórias e respiratórias
 - Impactes conhecidos até 3 dias
- Vagas de frio → Períodos de frio extremo
 - Aumento da atividade dos vírus respiratórios (ex. gripe)
 - Aumento da mortalidade por doenças circulatórias e respiratórias
 - Impactes conhecidos até 7 dias

SISTEMAS DE VIGILÂNCIA E ALERTA – TEMPERATURAS EXTREMAS

ÍCARO

- <u>Importância do CAlor: Repercussões sobre os Óbitos</u>
- Continente e suas regiões de saúde
- População geral e com 75 e mais anos
- Maio a setembro
- Usa previsões a 3 dias

FRIESA

- FRIo Extremo na SAúde da população
- Distritos de Lisboa e do Porto
- Todas as causas e Doenças dos aparelhos Circulatório e Respiratório
- População geral e com 65 e mais anos
- Novembro a março
- Usa previsões a 9 dias

ÍCARO

1997

• Desenvolvimento do modelo para a relação entre o calor e mortalidade para o distrito de Lisboa (Modelo ÍCARO) [1]

1999

• Sistema de Vigilância ÍCARO + Índice-ÍCARO [2]

• 1º Sistema Europeu de vigilância de ondas de calor (DGS, SNB e PC)

2003 •

- Europa sofre Onda de Calor
- Confirmação das qualidades do modelo ÍCARO

2005

- Atualização do modelo ÍCARO para Lisboa (Experimentação de limiares dinâmicos) [3]
- Definição das Regiões ÍCARO e construção dos modelos regionais (múltiplos limiares fixos)
- Índice ÍCARO Nacional Média Ponderada dos ÍCARO Regionais (com base nas estimativas da população residente 2005 (INE)

2021

• 23º Verão consecutivo de vigilância ÍCARO

ÍCARO – Circuito de informação

Fornece os dados das temperaturas:

- Máximas observadas (t-1)
- Máxima previstas a 3 dias (t, t+1, t+2)

Com base num modelo
Estatístico calcula o impacte
das temperaturas máximas
(previstas) sobre a mortalidade
– Boletim Ícaro

Envio do Boletim Ícaro

Despacho nº14/2015 SEAMS (07 de maio de 2015)

- a) Gabinetes do Ministério da Saúde;
- b) Direcção-Geral da Saúde;
- c) Administração Central do Sistema de Saúde, IP;
- d) Instituto Nacional de Emergência Médica, IP
- e) Administrações Regionais de Saúde;
- f) Agrupamentos de centros de saúde;
- g) Estabelecimentos hospitalares, independentemente da sua designação;
- h) Unidades locais de saúde;
- i) Linha Saúde 24;
- j) Autoridade Nacional de Proteção Civil;
- k) Autoridades de Saúde Regionais;
- 1) Instituto Português do Mar e Atmosfera, IP;
- m) Instituto dos Registos e Notariado, IP.

SNS 24
CENTRO DE CONTACTO
SERVIÇO NACIONAL DE SAÚDE

ÍCARO – Cálculo do Índice

Temperaturas máximas observadas e previstas (d a d+2)

 Aplicação de modelo de previsão estatístico Óbitos previstos para até os dois dias seguintes (d a d+2)

 Aplicação da fórmula de cálculo do II

Índice ÍCARO

- Regiões ÍCARO [1]
 - Nacional
 - Regiões de Saúde

$$STAG_t(\tau) = DOndG_t(\tau) \times Exc_t(\tau)$$

DondG_t(τ) - Número de dias consecutivos com a temperatura acima de τ, até ao dia t

$$DOndG_{t}(\tau) = \begin{cases} DOndG_{t-1}(\tau) + 1 & se & T \max_{t} \ge \tau \\ DOndG_{t-1}(\tau) - 1 & se & T \max_{t} < \tau \land DOndG_{t-1}(\tau) > 0 \\ 0 & se & T \max_{t} < \tau \land DOndG_{t-1}(\tau) = 0 \end{cases}$$

 $Exc_t(\tau)$ - Excesso de temperatura acima de τ , no dia t

$$Exc_{t}(\tau) = \begin{cases} T \max_{t} - \tau & se \quad T \max_{t} > \tau \\ 0 & se \quad \text{otherwise} \end{cases}$$

$$Y_{t} = C + \alpha \times STAG_{t}(\tau) + \varepsilon$$

Modelo simplificado para o verão

Y_t - Nº de óbitos no dia t **STAG**_t(τ) - Sobrecarga Térmica Acumulada generalizada (acima do limiar τ) até ao dia t Corresponde a um excesso relativo de risco.
Um II=0,8 corresponde a um aumento da mortalidade previsto de 80%

Índice-ÍCARO (II) =
$$\frac{Número\ de\ óbitos\ esperado\ com\ calor}{Número\ de\ óbitos\ esperado\ sem\ calor} - 1$$

ÍCARO – Níveis de alerta

Verde

• Efeito nulo sobre a mortalidade (Índice-ÍCARO igual a 0)

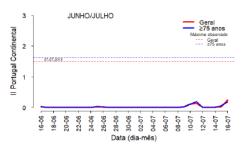
Amarelo

 Efeito sobre a mortalidade não significativo (Índice-ÍCARO superior a 0 com excesso relativo estimado não significativo)

Vermelho

 Efeito sobre a mortalidade significativo (Índice-ÍCARO superior a 0 com excesso relativo estimado significativo)

ÍCARO – Boletim diário (14 de julho de 2021)



Efeito do Calor na Mortalidade quarta-feira, 14 de julho de 2021

Portugal Continental Indice-ICARO (II)

0,24

Efeito sobre a mortalidade significativo

Índices-ÍCARO

Continente

População	2021-07-13	2021-07-14	2021-07-15	2021-07-16	Máxim	0
Geral	0,00	0,01	0,03	0,24	0,24	*
≥75 anos	0,00	0,00	0,06	0,17	0,17	*

Regiões de Saúde

População	2021-07-13	2021-07-14	2021-07-15	2021-07-16	Máxin	00
Norte			2022 01 25			
Geral	0.00	0.00	0.01	0.24	0.24	
Gerai	0,00	0,00	0,01	0,34	0,34	
≥75 anos	0,00	0,00	0,03	0,18	0,18	
Centro						
Geral	0,00	0,00	0,01	0,26	0,26	•
≥75 anos	0,00	0,00	0,02	0,14	0,14	
LVT						
Geral	0,00	0,03	0,06	0,18	0,18	
≥75 anos	0,00	0,01	0,12	0,21	0,21	
Alentejo						
Geral	0,00	0,00	0,00	0,07	0,07	
≥75 anos	0,00	0,00	0,00	0,07	0,07	
Algarve						
Geral	0,00	0,00	0,00	0,07	0,07	
≥75 anos	0,00	0,00	0,00	0,07	0,07	

População Geral

NOTAS

Os II assinalados com * correspondem a um efeito estatisticamente significativo. Os II do dia anterior, recalculados com as temperaturas efetivamente observadas, são apresentados a itálico. O Máximo corresponde ao valor máximo do II previsto para 3 dias.

DEP-INSA e DivMV-IPMA Página 1 de 2

Página 2 de 2

Temperaturas dos Distritos (Previsões)

Previsões para 2021-07-15 e 2021-07-16

	Máximas (°C)		Limiar Diário (°C) <u>Dias acima</u>		acima	Limiar de <u>Dias acima</u>			Mínimas (°C)		
	15/07	16/07	15/07	16/07	15/07	16/07	Verão (°C)	15/07	16/07	15/07	16/07
Aveiro	32	33	25,8	25,8	2	3	27	1	2	15	21
Beja	36	38	34,8	34,8	1	2	36	0	1	18	17
Braga	35	38	29,9	29,9	2	3	32	1	2	17	18
Bragança	31	33	31,0	31,0	1	2	33	0	0	13	14
Castelo Branco	35	38	33,7	33,7	1	2	36	0	1	21	22
Coimbra	35	36	30,7	30,7	2	3	32	1	2	15	20
Évora	37	39	33,0	33,0	2	3	35	2	3	19	17
Faro	30	29	29,9	29,9	1	0	31	0	0	20	19
Guarda	29	32	27,0	27,0	1	2	29	0	1	14	16
Leiria	36	33	26,9	26,9	2	3	29	1	2	13	18
Lisboa	33	37	30,1	30,1	2	3	32	2	3	20	21
Portalegre	35	37	32,1	32,1	2	3	34	1	2	23	23
Porto	35	31	26,1	26,1	2	3	28	2	3	18	21
Santarém	39	40	32,2	32,2	2	3	34	2	3	16	18
Setúbal	31	33	31,4	31,4	0	1	33	0	0	19	16
Viana do Castelo	32	32	28,4	28,4	1	2	30	1	2	16	19
Vila Real	32	35	30,8	30,8	1	2	33	0	1	15	17
Viseu	31	35	31,4	31,4	0	1	33	0	1	17	20

As temperaturas aqui apresentadas são disponibilizadas pelo IPMA e correspondem ao RUN das 00UTC. A lista das estações meteorológicas consideradas pode ser consultada aqui.


Notas técnicas (Pode encontrar um documento de apoio aqui.)

O Índice-ÍCARO (II) é um indicador do efeito das temperaturas previstas para o próprio dia (d) e os dois dias seguintes (d+1 e d+2) na mortalidade da população de Portugal Continental. Corresponde à razão entre o número de óbitos previsto, tendo em conta as temperaturas observadas e previstas, e o número de óbitos esperado sem o efeito do calor (Risco Relativo), menos 1. Pode ser assim interpretado como um excesso relativo de risco (RR-1). Este indicador é calculado para Portugal Continental, as 5 regiões de saúde do continente, a população geral e a população com 75 e mais anos de idade, podendo ser comparado entre os estratos.

O Boletim ÍCARO tem 3 blocos de informação:

- 1. Efeito do Calor na Mortalidade Apresenta a previsão do II para Portugal Continental que resulta da média dos Índices Regionais (Regiões Icaro) ponderados pela população das regiões. No gráfico são apresentados os II dos últimos 28 dias e os II previstos para 3 dias (d, d+1, d+2). O II destacado correspondente ao valor máximo previsto para o período dos 3 dias para a população geral. De acordo com este valor e o seu significado estatístico é então classificado como: "Efeito nulo sobre a mortalidade", "Efeito sobre a mortalidade não significativo" ou "Efeito sobre a mortalidade significativo".
- 2. Índices-ÍCARO Apresenta os II calculados para o dia anterior (d-1), para o próprio dia (d) e para os 2 dias seguintes (d+1 e d+2). O cálculo do II para d-1 é realizado usando as temperaturas observadas, e para d, d+1 e d+2 usando as temperaturas previstas. Nas últimas duas colunas é apresentado o valor máximo do II previsto dos 3 dias e é sinalizado o significado estatístico pela presença de um asterisco (*). No mapa é representado o Índice-ÍCARO máximo previsto para os 3 dias e o seu significado estatístico para a população geral, por região de saúde.
- Temperaturas dos distritos Apresenta informação sobre as temperaturas previstas para os dois dias seguintes (d+1 e d+2), os limiares da temperatura máxima diários e de verão para cada distrito e o número de dias a que cada distrito está acima destes valores.

Mortalidade (VDM)

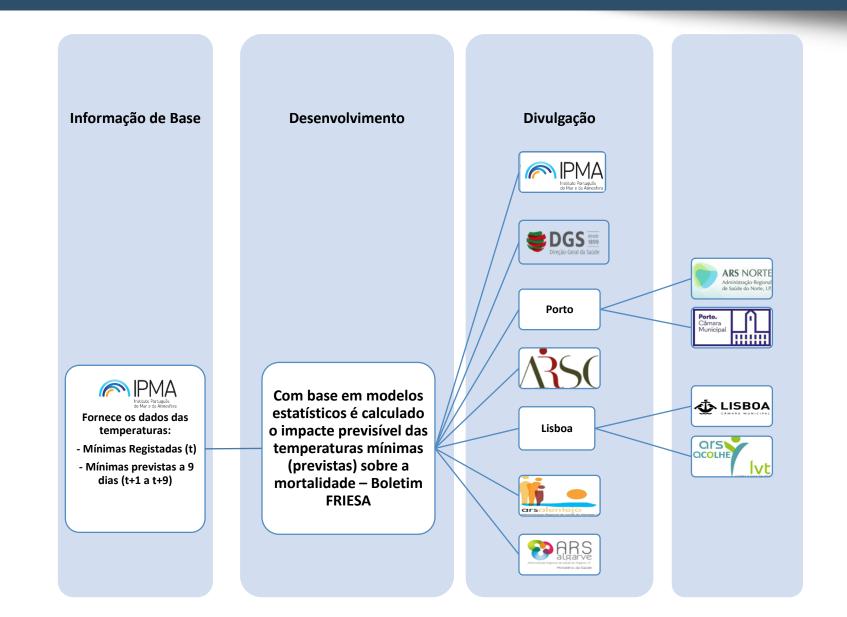
DEP-INSA e DivMV-IPMA

ÍCARO

PLANO DE CONTINGÊNCIA SAÚDE SAZONAL – MÓDULO VERÃO REFERENCIAIS 2021 [1]

6. ANEXOS

Anexo I - Indicadores de monitorização e avaliação do plano


Indicador	Fonte de informação			
Critérios para avaliação de risco				
Índice-Alerta-Ícaro (efeito do calor sobre a mortalidade)	INSA			
Temperaturas máximas e mínimas observadas e previstas	IPMA			
Avisos meteorológicos de tempo quente/onda de calor	IPMA			
Nº de eventos/ocorrências de exceção (ex.: grandes incêndios)	DGS/ANEPC / IPMA/ ARS			

FRIESA

• Desenvolvimento do modelo para a relação entre o frio e mortalidade para os distritos de Lisboa e do Porto (Modelo FRIESA) [1] 2014 • Início de Sistema Piloto de Vigilância FRIESA 2015 Atualização dos modelos 2016 • Vai começar a 7º época consecutiva de vigilância FRIESA 2021

FRIESA – Circuito de informação

ÍCARO – Cálculo do Índice

Temperaturas mínimas observadas e previstas (d a d+9)

 Aplicação de modelo de previsão estatístico Óbitos previstos para até os nove dias seguintes (d a d+9)

 Aplicação da fórmula de cálculo do FRIESA Índice FRIESA [1]

- Lisboa
- Porto

$$\log E[Y_t] = \propto + \beta T min_{t,l} + \gamma T axaGripe_{t,l} + \delta S(Tendencia, \theta_1) + \varepsilon S(sazonalidade, \theta_2) + \varepsilon DiaSemana + offset(\log(população_t))$$

Y, - número de óbitos observado no dia t;

 $Tmin_{t,l}$ e $TaxaGripe_{t,l}$ - matrizes cruzadas resultantes da aplicação de DLNM à temperatura mínima e à Taxa de Incidência de Síndroma Gripal;

 $S(.,\Theta)$ representa uma função suavizadora (natural cubic B-spline ou polinónimo com Θ graus de liberdade) da **tendência** e da **sazonalidade**;

DiaSemana - dia da semana considerado como variável categórica;

I - desfasamento;

população – corresponde à dimensão da população.

Índice FRIESA=
$$\frac{\acute{0}bitos\ Previstos-\acute{0}bitos\ Esperados}{1,96\sqrt{\acute{0}bitos\ Esperados}}$$

FRIESA – Níveis de alerta

		Lisk	boa		Porto				
	TC	C&R	TC 65+	C&R 65+	TC	C&R	TC 65+	C&R 65+	
Nível 1	0,82	1,00	0,92	1,00	1,00	0,73	1,00	0,78	
Nível 2	1,49	1,78	1,67	1,66	1,56	0,95	1,44	1,01	

Índice > Nível 2
Efeito muito provável sobre a mortalidade

Nível 1 < Índice ≤ Nível 2 Efeito provável sobre a mortalidade

0 ≤ Índice ≤ Nível 1 Efeito pouco provável sobre a mortalidade

FRIESA – Boletim diário (5 de janeiro de 2020)

FRIESA

Boletim diário de previsão do efeito do frio na mortalidade

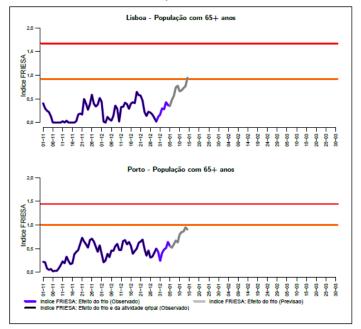
domingo, 05 de janeiro de 2020

Índice FRIESA

Efeito máximo previsto na população com 65+ anos para os próximos 9 dias

Distrito de Lisboa

Efeito provável sobre a mortalidade por todas as


| Indice máximo (data)
| Todas as causas | 0.95 (2020-01-14) |
| Circ&Respiratórias | 0.89 (2020-01-14) |

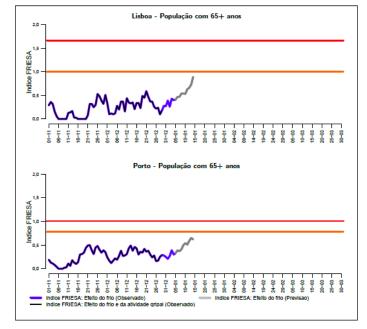
Distrito do Porto

Efeito pouco provável sobre a mortalidade

| Indice máximo (data)
| Todas as causas | 0,95 (2020-01-13)
| Circ&Respiratórias | 0,65 (2020-01-13)

Mortalidade por todas as causas

IPMA



Página 1 de 4

FRIESA

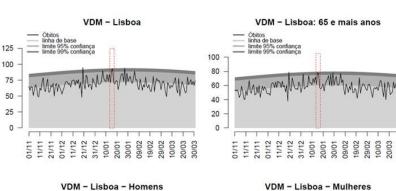
Mortalidade por doenças dos aparelhos circulatório e respiratório

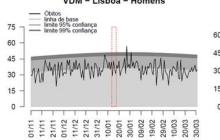
Informação Numérica

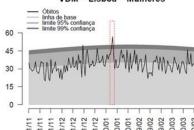
Temperaturas mínimas (°C)

Obse	ervadas		Previstas				
Data	Lisboa	Porto	Data	Lisboa	Porto		
28-12-2019	10,6	8,8	06-01-2020	6,2	4,1		
29-12-2019	9,2	9,6	07-01-2020	6,2	2,7		
30-12-2019	7,1	7,3	08-01-2020	6,6	3,2		
31-12-2019	6,8	6,0	09-01-2020	10,2	7,3		
01-01-2020	5,8	4,5	10-01-2020	8,5	5,8		
02-01-2020	6,5	5,3	11-01-2020	6,5	4,8		
03-01-2020	9.9	9.0	12-01-2020	6.7	6.3		
04-01-2020	9.1	7.2	13-01-2020	8.0	7.6		
05-01-2020*	6,6	5,6	14-01-2020	10,2	9,0		

^{*} Temperatura mínima observada até às 9:00h. Possível atualização no próximo boletim.







Mortalidade (VDM)

FRIESA

- DGS criou em 2015 um *Plano de Contingência para Temperaturas Extremas Adversas Módulo Inverno* exclusivamente com dados meteorológicos.
- Na época 2016/17 o Índice FRIESA foi considerado no plano de contingência regional da ARS LVT

SISTEMAS DE VIGILÂNCIA E ALERTA EM SAÚDE

Avisos, alertas e plano de resposta

- As intervenções passam por:
 - Comunicados à população: formas de baixar/aumentar a temperatura do corpo e de proteção do calor/frio extremo;
 - "Buddy systems": seguimento de indivíduos fragilizados por familiares, amigos e vizinhos;
 - Planos de contingência para as unidades de cuidados de saúde: climatização e preparação para respostas específicas.

PRÓXIMOS PASSOS

- Aperfeiçoar os sistemas de vigilância e alerta existentes: ÍCARO e FRIESA;
- Desenvolver outros sistemas de vigilância e alerta: doenças transmitidas por vetores;
- Avaliar a efetividade dos sistemas, planos de resposta e medidas concretas de mitigação;
- Monitorizar os conhecimentos e a perceção de risco da população.

IMPORTA PREVER E PREVENIR DE FORMA A
MITIGAR OS IMPACTES NA SAÚDE PROVOCADOS
PELAS TEMPERATURAS EXTREMAS

Outubro de 2021

Auditório do LNEC em Lisboa

SEMINÁRIO

A INVESTIGAÇÃO NOS

LABORATÓRIOS DO ESTADO

E A CONSTRUÇÃO DE UMA

SOCIEDADE SEGURA E

MAIS RESILIENTE

Obrigado!

Susana Silva

Departamento de Epidemiologia

E-mail: susana.pereira@insa.min-saúde.pt

