Novel upcycling technique of recycling of cement paste powder by a two-step carbonation process

Chi Sun Poon Department of Civil and Environmental Engineering The Hong Kong Polytechnic University

Research at PolyU Turning wastes to eco-construction products

Construction and Demolition Waste

建筑和拆迁废物

15 Million tonnes 一千五百万吨 **Batching plants** 混凝土搅拌站 Excavation 挖掘 Road Work 公路 Demolition 拆迁 Construction 建筑 C&D Waste Renovation 装修 Refurbishment 翻新,整修

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Material Flow of Demolition of Concrete Structures

Disposal at landfills

CRCA-coarse recycled aggregate (> 5mm) FRCA- fine recycled aggregate (0.15 – 5 mm) RFA- recycled fine powder (0.15 mm)

Characteristics of RCA

Technical background

$$\begin{split} & C_3S: 3CaO\cdot SiO_2\left(s\right); \quad C_2S: 3CaO\cdot SiO_2\left(s\right); \quad C_3A: 3CaO\cdot Al_2O_3\left(s\right) \\ & C_4AF: 4CaO\cdot Al_2O_3\cdot Fe_2O_3; \quad Gypsum: CaSO_4\cdot 2H_2O; \quad CH: Ca(OH)_2 \\ & C-S-H: xCaO\cdot ySiO_2.zH_2O \; gel; \quad Aft: 3CaO\cdot Al_2O_3\cdot 3CaSO_4\cdot 32H_2O \end{split}$$

Accelerated CO₂ Curing Technique

Carbonation of cement hydration products: CH and CSH are predominant components to react with carbon dioxide in cement paste during carbonation.

$$CSH_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + silica + H_2O_{(I)}$$

$$Ca(OH)_{2(s)} + CO_{2(g)} \rightarrow \frac{CaCO_{3(s)}}{CaCO_{3(s)}} + H_2O_{(I)}$$

33.0 ml/mol 36.9ml/mol

11.8% increase in solid volume

CO₂ sequestration by RCAs

X. Fang, D. Xuan, **C.S. Poon**, (2017). Materials and Structures, 50(4): 200.

Material Flow of Demolition of Concrete Structures

Disposal at landfills

CRCA-coarse recycled aggregate FRCA- fine recycled aggregate RFA- recycled fine powder

Properties of carbonated RCAs and RAC (1)

Water absorption and density of CMA before and after liquid-solid and gas-solid pressurized carbonation

Compressive strength of RAC incorporated with carbonated CMA at 28 days

Liu S.Shen P.Xuan D.Li L.Sojobi A.Zhan B. Poon C.S. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate, *Cement and Concrete Composites* Volume 118, April 2021 Article number 103988

Properties of carbonated RCAs and RAC (2)

(a) Non-carbonated NRCAs

(b) Carbonated NRCAs

(a) Cumulative intrusion

(b) Incremental intrusion

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系

Properties of carbonated RCAs and RAC (3)

Effects of carbonated RA on compressive strength of concrete

D. Xuan, B. Zhan, C.S. Poon, (2016). Cement and Concrete Composites, 65: 67-74.

Properties of carbonated RCAs and RAC (4)

Effects of carbonated RA on elastic modulus of concrete

D. Xuan, B. Zhan, C.S. Poon, (2016). Cement and Concrete Composites, 65: 67-74.

Properties of carbonated RCAs and RAC (5)

Effects of carbonated RCAs on passed in coulombs of RAC

D. Xuan, B. Zhan, C.S. Poon, (2017). Cement and Concrete Composites, 84: 214-221.

Properties of carbonated RCAs and RAC (7)

• The water absorption values of RAC may be used as a criterion to indicate the durability of RAC.

Properties of carbonated RCAs and RAC (11)

Effects of carbonated RA on resistance to corrosion of RAC

• Polarization resistance of non-carbonated NRAC rapidly decreased at the 11th damage cycle, indicating that the steel in non-carbonated NRAC was corroded.

Zeng W., Zhao Y., Zheng H., Poon C.S., *Cement and Concrete Composites* Volume 106, February 2020, Article number 103476

Properties of carbonated RCAs and RAC (8)

The microhardness of the cement paste in the old mortar of NRCAs was enhanced after the carbonation treatment. Moreover, the microhardness on the new ITZ around the carbonated NRCAs had higher values than that around the non-carbonated NRCAs.

D. Xuan, B. Zhan, C.S. Poon, (2016). Cement and Concrete Composites, 65: 67-74.

ENVIRONMENTAL ENGINEERING

Disposal at landfills

CRCA-coarse recycled aggregate FRCA- fine recycled aggregate RFA- recycled fine powder

AND ENVIRONMENTAL ENGINEERING

Fast wet carbonation for FRCA particles from 0.15-5 mm

Schematic illustration

Fang, X.L., Xuan, D.X., Shen, P.L., & Poon, C.S. Fast enhancement of recycled fine aggregates properties by wet carbonation, *Journal of Cleaner Production*, Volume 3131 September 2021 Article number 127867

Changes in carbonation products after wet carbonation

Thermogravimetric analysis

Fang, X.L., Xuan, D.X., Shen, P.L., & Poon, C.S. Fast enhancement of recycled fine aggregates properties by wet carbonation, *Journal of Cleaner Production*, Volume 3131 September 2021 Article number 127867

ENVIRONMENTAL ENGINEERING

Microscopic analysis

Effect of carbonation time

some carbonation products were noticed after 10 min

After 1h, a lot of carbonation products were observed.

Effect on mortar specimens

Mixture design

Replace ment ratio	River sand	Carbonated RFA	Raw RFA	Water	Cement	Flowability (ASTM C1437-01,	Adjusted water
						2001)	
0%	1800	0		300	600		11.5
50%	900	900		300	600		69.7
50%	900		900	300	600	200±20 mm	84.1
100%	0	1800		300	600		127.8
100%	0		1800	300	600		156.6

Effect on mortar specimens

Compressive strength

Effect on mortar specimens

Drying shrinkage

Fang, X.L., Xuan, D.X., Shen, P.L., & Poon, C.S. Fast enhancement of recycled fine aggregates properties by wet carbonation, Journal of Cleaner Production, Volume 3131 September 2021 Article number 127867

Material Flow of Demolition of Concrete Structures

Disposal at landfills

CRCA-coarse recycled aggregate FRCA- fine recycled aggregate RFA- recycled fine powder

Preparation of calcium-rich and a silica-rich materials by two-step carbonation (1)

The two-step carbonation process:

Step 1: Extraction of Ca²⁺ and carbonation to form Ca-rich residue

CIVIL AND ENVIRONMENTAL ENGINEERING

大及環境工程學系

Xiaoliang Fang, Dongxing Xuan, Baojian zhan, Poon C. S. (2021) Journal of Cleaner Production, 290: 125192

Preparation of calcium-rich and a silica-rich materials by two-step carbonation (2)

>CO₂ sequestration and production of value added products

Xiaoliang Fang, Dongxing Xuan, Baojian zhan, Poon C. S. (2021) Journal of Cleaner Production, 290: 125192

Preparation of calcium-rich and a silica-rich materials by two-step carbonation (5)

The Ca-rich residue mainly consisted of calcite;

Xiaoliang Fang, Dongxing Xuan, Baojian Zhan, **Poon C. S.** (2021) Journal of Cleaner Production, 290: 125192

Preparation of calcium-rich and a silica-rich materials by two-step carbonation (6)

Morphologies of Si-rich and Ca-rich materials

SEM image of (a) Ca-rich residue, and (b) Si-rich gel.

- The Ca-rich residue mainly consisted of crystalline calcite;
- The Si-rich gel was in the form of agglomerated spherical particles

Xiaoliang Fang, Dongxing Xuan, Baojian zhan, **Poon C. S.** (2021) Journal of Cleaner Production, 290: 125192

Preparation of nano-silica by another twostep wet carbonation (1)

The two-step carbonation process

Step 1: The wet carbonation of Fine RCA in water

Step 2: Extraction of silica phase by wet carbonation

Shen Peiliang, Jian-xin Lu, **Poon C. S.** (2021). Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation Cement and Concrete Research, accepted

Preparation of nano-silica by two-step wet carbonation (2)

>CO₂ sequestration and production:0.27 g CO₂ per 1 g RCF

Shen Peiliang, Jian-xin Lu, Poon C. S. (2021). Cement and Concrete Research, accepted

Preparation of nano-silica by two-step wet carbonation

Microstructure of carbonation products after first step wet carbonation

SEM images of RCF after 60 min carbonation

- Many crystalline calcite grains with a size of less than 5 μm could be observed;
- Some amorphous phases can be observed the surface of the calcite;

Shen Peiliang, Jian-xin Lu, Poon C. S. (2021). Cement and Concrete Research,

AND ENVIRONMENTAL ENGINEERING

及環境工程學系

Preparation of nano-silica by two-step wet carbonation

Compositions of products after second step wet carbonation process

The detailed composition of silica bearing gel: (a) FTIR results, (b) NMR results

- The wavenumber of Si-O was increased to 1070 cm⁻¹ indicated the presence of silica;
- The Q⁴ units were the dominated in S-washed, which indicated that it was a kind of highly polymerized amorphous silica.

Shen Peiliang, Jian-xin Lu, Poon C. S. (2021). Cement and Concrete Research,

ENVIRONMENTAL ENGINEERING

Preparation of nano-silica by two-step wet carbonation

Compositions of products after second step wet carbonation process

Table The chemical composition of silica bearing gel and residue

NO.	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	Fe ₂ O ₃	P ₂ O ₅
S-1M	12.8	0.202	24.9	60.6	1.01	0.264	0.121	0.055
S-2M	15.5	/	22.4	56.9	0.854	3.98	0.108	/
S-5M	11.03	0.499	25.6	59.7	0.384	1.40	0.125	0.17
S-washed	/	/	0.56	98.8	0.16	0.29	0.072	/
Residue	5.5	1.05	3.32	14.2	0.173	70.3	3.43	0.165

• An amorphous silica with a high purity of 98.8% could be prepared.

Shen Peiliang, Jian-xin Lu, Poon C. S. (2021). Cement and Concrete Research, accepted

SEM/TEM images of nano silica

S-1M S-washed Figure 12 The SEM and TEM images of silica bearing gel

Shen Peiliang, Jian-xin Lu, Poon C. S. (2021). Cement and Concrete Research, accepted

Material Flow of Demolition of Concrete Structures

Disposal at landfills

CRCA-coarse recycled aggregate FRCA- fine recycled aggregate RFA- recycled fine powder

Conclusion

- Accelerated carbonation can be utilized for valorization of concrete waste
- After carbonation, coarse fractions can be upcycled for use in concrete
- Waste cement fine powder can be upcycled to calcite and silica
- Waste CO₂ can also be sequestrated

Acknowledgement

We wish to thank the funding supports of

Research Grants Council of HKSAR Government Hong Kong Construction Industry Council Hong Kong Polytechnic University

Thank You!

Email: cecspoon@polyu.edu.hk

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 土木及環境工程學系