Papers
Info
Assessment of contact laws accounting for softening in 3D rigid concrete particle models
o obtain predictions closer to concrete behaviour, it is necessary to employ a particle model(PM) that considers contact softening. A bilinear softening contact model (BL) has been adoptedin PM studies. Several limitations in PM predictions have been identified that may be due to BLassumptions. For this reason, this paper compares BL predictions with those obtained with morecomplex models to assess if PM predictions can be improved. As shown, it is possible to calibrateeach contact model to reproduce the complex behaviour observed in concrete in uniaxial and biaxialloading. The predicted responses are similar, and the known PM limitations still occur independentlyof the adopted model. Under biaxial loading, it is shown that a response closer to that observed inconcrete can be obtained (higher normal-to-stiffness ratio of
Year: 2024
Number Pages:
29p..
Author(s): Azevedo, N.; Braga Farinha, M. L.; Oliveira, S.
: Buildings
Editor: MDPI
Volume:
14.
Keywords: concrete fracture; contact softening laws; discrete element; particle model
Info
3D dem model simulation of asphalt mastics with sunflower oil
A three-dimensional particle model, based on the asphalt mastic micro-structure representation following a discrete element model framework, was developed to investigate the influence of sunflower oil (rejuvenator) on the rheological properties of asphalt mastic. Dynamic shear rheometer tests in laboratory, for a frequency range of 0.1
Year: 2023
Author(s): Câmara, G.; Micaelo, R.; Azevedo, N.
: Computational Particle Mechanics
Editor: Springer
Keywords: Sunflower oil; Self-healing; Viscoelasticity; Generalized Kelvin model; Discrete element model; Asphalt mastic
Info
Analysis and prediction of masonry wallette strength under combined compression-bending via stochastic computational modeling
The out-of-plane flexural bending capacity of masonry is a fundamental property for understanding the behavior of masonry structures. This study investigates the behavior of unreinforced masonry wallettes subjected to combined compression-flexural loading using the discrete element method (DEM), and provides a novel framework to estimate the masonry strength. A simplified micro-modeling strategy is utilized to analyze a masonry wallette, including the variation of the mechanical properties in masonry units and joints. Stochastic DEM analyses are performed to simulate brickwork assemblages, assuming a strong unit-weak joint material model typical of most masonry buildings, including historical ones. Once the proposed computational approach is validated against the experimental findings, the effect of spatial and non-spatial variation of mechanical properties is explored. Two failure types are identified: joint failure and brick failure. For each failure mechanism, the variability of the response and the effects of the modeling parameters on the load-carrying capacity is quantified. Afterward, Lasso regression is employed to determine predictive equations in terms of the material properties and vertical pressure on the wallette. The results show that the most important parameters changing the response are the joint tensile strength and the amount of vertical stress for joint failure, whereas the unit tensile strength dominates the response for brick failure. Overall, this research proposes a novel framework adopting validated advanced computational models that feed on simple test results to generate data that is further utilized for training response prediction models for complex structures.
Year: 2023
Author(s): Gonen, S.; Pulatsu, B.; Lourenço, P.; Lemos, J. V.; Tuncay, K.; Erduran, E.
Editor: Elsevier
Keywords: Masonry
Info
Application of Bonded-Block Models to Rock Failure Analysis
Discrete element models are being increasingly applied to model rock failure processes.Bonded-particle models, based on circular or spherical particle systems, have been successfully usedfor two decades. More recently, bonded-block models, using polygonal or polyhedral elements, have proven to be a powerful alternative. This paper describes the basis of the application of these models in the numerical simulation of failure in rock materials. The critical governing parameters are identified, and their influence is discussed. The model calibration procedure based on the analysis of laboratory tests is discussed. An application example of an underground excavation problem is presented using a simple bonded-block model employing rigid blocks and a bilinear softening contact model. The results show the capability of this approach to reproduce observed failure modes involving block fractures.
Year: 2023
Author(s): Lemos, J. V.
Editor: MDPI
Keywords: rock mechanics
Info
Dynamic analysis of masonry arches using Maxwell damping
Masonry arches are a fundamental component of historical structures. The assessment of the vulnerability ofthese heritage constructions to seismic loading requires reliable and efficient numerical models. Discrete element models are an alternative to finite element models, being particularly effective in modelling collapse mechanisms created by shearing and separation of the units along the joints. Discrete element codes typically rely on explicit methods of integration of the equations of motion for dynamic analysis, which may require large run times when the recommended stiffness-proportional component of Rayleigh damping is applied. A novel approach is proposed using an alternative damping model, Maxwell damping, which involves placing multiple spring-dashpot elements in the joints, in parallel with the standard stiffness springs. This damping model is tested in the dynamic analysis of masonry arches, under pulse and earthquake loading. The results obtained in this early investigation show a good performance in the simulation of collapse under dynamic loads, in general agreement with the analyses conducted with classical stiffness-proportional damping, but reducing significantly the computational effort.
Year: 2023
Author(s): Lemos, J. V.; Sarhosis, V.
: Structures
Editor: Elsevier
Keywords: Masonry arches
Info
Generalised kelvin contact models for DEM modelling of asphalt mixtures
Rigid particle models based on the discrete element method (DEM) have been adopted to model creep, fracture, and the viscoelastic behaviour of asphalt mixtures considering an irregular micro-structure and particle contacts. Within a DEM framework, the Burgers contact model, which is known to have a narrow frequency and temperature range, is usually adopted to model viscoelastic properties. In this study, a new explicit three-dimensional generalised Kelvin (GK) contact model formulation for the DEM model is proposed for asphalt materials. The model is implemented following two different methodologies (GK and GK). The models are validated in uniaxial tension-compression sinusoidal tests for predicting the dynamic modulus () and phase angle (
Year: 2023
Number Pages:
15p.
Author(s): Câmara, G.; Azevedo, N.; Micaelo, R.; Silva, H
Editor: Taylor & Francis
Volume:
24 (1).
Keywords: dynamicbehaviour; viscoelasticity; three-dimensional model; discrete element method; Asphalt mixture
Info
Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach
Encapsulated rejuvenators embedded in asphalt mixtures are a promising technology toextend the service life of asphalt pavements. However, their effects on the asphalt mixture
Year: 2023
Number Pages:
22p..
Author(s): Câmara, G.; Azevedo, N.; Micaelo, R.
: Buildings
Editor: MDPI
Volume:
13.
Keywords: capsules; encapsulated rejuvenator; rejuvenator-modified mastic; asphalt mixture; self-healing; discrete element modeling
Info
Insights about modelling environmental spatiotemporal actions in thermal analysis of concrete dams: A case study.
N/A
Year: 2023
Author(s): Leitão, N. S.; Oliveira, S.
Editor: MDPI
Info
Metrological quality of the excitation force in forced vibration test of concrete dams
This paper describes the study of the metrological quality of the excitation force inthe context of force vibration test of concrete dams. For this purpose, a measurementuncertainty evaluation was performed, based on available probabilistic information about theinput quantities
Year: 2023
Author(s): Lages Martins, L.; Gomes, J. P.; Ribeiro, A.
: Journal of Physics: Conference Series, Uncertainty quantification and probabilistic learning in computational dynamics
Editor: Purpose-Led Publishing
Volume:
Volume 2647.
Info
Modelação numérica do comportamento dinâmico observado da barragem do Baixo Sabor
A conjugação entre os modelos numéricos e os resultados observadosdo comportamento das obras é uma ferramenta fundamentalno apoio ao controle de segurança de grandes obras. A barragemdo Baixo Sabor possui um sistema de monitorização dinâmicaem continuo, e foram realizados dois ensaios de vibração forçadapara duas cotas de albufeira. Neste contexto foram desenvolvidosmodelos numéricos da barragem do Baixo Sabor incorporando oconjunto barragem-fundação-albufeira. Neste artigo, apresentamseos resultados dos modelos numéricos desenvolvidos para váriosníveis da albufeira comparando com os resultados experimentais.
Year: 2023
Author(s): Gomes, J. P.; Lemos, J. V.; Pereira, S.; Magalhães, F.; Cunha, A.
: Revista Portuguesa de Engenharia de Estruturas
Editor: LNEC, APEE, GPBE, SPES
Volume:
Série III, número 22.
Keywords: Comportamento dinâmico; Modelação numérica; Barragem de betão
|
Comunicação
Info
3D dem simulation of the post-healed behavior of asphalt mixtures with encapsulated rejuvenators
The integration of healing capsules into asphalt mixtures has demonstrated promising advancements in their intrinsic self-healing properties. However, the efficacy of this technology still requires further investigation. Rigid particle models, utilizing the discrete element method (DEM), have been adopted to simulate the creep, fracture, and viscoelastic behavior of asphalt mixtures, accounting for their irregular microstructure and particle contacts. This study utilizes the previously developed VirtualPM3DLab, a three-dimensional DEM framework, to numerically assess the impact of rejuvenator-modified mastic particles on the stiffness properties of post-healed asphalt mixtures where the asphalt mixture has undergone healing. Simulations consider different capsule proportions (0.30, 0.75, and 1.20 wt%) incorporated in the specimens. Numerical results reveal that the encapsulated rejuvenator reduces the stiffness modulus of asphalt mixtures, with this impact becoming more pronounced as the capsule amount increases due to the additional rejuvenator representation in the specimen. In addition, the phase angle remains unaffected across all numerical scenarios, suggesting that the viscoelastic behavior of asphalt mixtures is not significantly impacted and indicating the suitability of capsules for pavement applications. The findings also suggest that the percentage of these healing elements can slightly surpass the traditional amounts commonly used in laboratory settings.
Year: 2024
Number Pages:
10p..
Author(s): Câmara, G.; Micaelo, R.; Azevedo, N.
Editor: Springer
Keywords: Rejuvenator effect; Capsules; Stifness properties; Dem; Self-healing; asphalt mixtures
Info
Analysis and interpretation of the structural behavior of Covão do Meio dam, affected by concrete swelling, considering concrete visco-elasticity and cracking
This paper presents an updating of the analysis and interpretation ofthe structural behavior of Covão do Meio dam (in Portugal) which concrete isaffected by an ongoing swelling process.The simulation of dam
Year: 2024
Number Pages:
365-373pp..
Author(s): Dias, I. M.; Batista, A. L.
: Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete
Editor: SPRINGER
Volume:
Volume II.
Keywords: Concrete Swelling in Dams · Finite Element Method · Visco-elasticity · Damage model · Cracking
Info
Mineral aggregates representation in discrete numerical model of bituminous mixture
Micromechanical modelling through the Discrete Element Method (DEM) is adopted for the study of bituminous materials given its capability to replicate complex microstructures behaviour. Typically, DEM models of bituminous materials consist of an assembly of randomly distributed spherical rigid particles which interact using elastic and/or simple viscoelastic contact models, and individual aggregates are represented by single particles. However, recent years have witnessed a notable surge in research efforts aimed at incorporating true particle morphologies into numerical models.In the context of this research, an existing 3D DEM model for bituminous materials has been refined with the representation of mineral aggregates with realistic particle shapes. To achieve this, a digital library of aggregate shapes was constructed from X-ray computed tomography (CT) scans. An adaptive image-processing technique was employed to isolate the aggregates in the CT images, and the Delaunay method was used to create a 3D surface model of the aggregates. Several virtual aggregates with varying sizes were selected from this library to mirror the gradation of coarse aggregates in the 3D DEM asphalt model. Each virtual aggregate was discretized using smaller spherical particles, with its deformability given by its inner particle contacts.To evaluate the effectiveness of this enhanced approach, numerical assemblies featuring realistic particle shapes were subjected to a cyclic loading protocol. Overall, realistic particles shapes increased the stiffness modulus and decreased the phase angle of numerical specimens, and the effect was greater with a finer discretization of aggregates. The outcomes clearly demonstrate the importance of this numerical improvement to accurately simulate the bituminous mixture behaviour.
Year: 2024
Number Pages:
10p..
Author(s): Micaelo, R.; Azevedo, N.; Câmara, G.
Editor: Springer
Keywords: Computed tomography; Discrete element method; Aggregate shape and deformation; Bituminous materials
Info
Modelação de muretes de alvenaria de pedra tradicional em compressão-corte utilizando modelos de partículas 2D: Cargas monotónicas e cíclicas
A avaliação estrutural das paredes de alvenaria de pedra tradicional é uma tarefa complexa devido à heterogeneidade e incerteza nas propriedades dos materiais constituintes, argamassa e pedra, e à variabilidade do posicionamento e geometria destes elementos na alvenaria. Nesta comunicação, modelos experimentais de alvenaria de pedra (muretes), construídos de acordo com técnicas tradicionais portuguesas, ensaiados experimentalmente sob condições de carregamento em compressão-corte, são avaliados numericamente, adotando uma abordagem de micro-modelação através de um modelo de partículas 2D (2D-MP). Estudos anteriores demonstram que os modelos 2D-MP conseguem prever o comportamento de estruturas de alvenaria antiga, nomeadamente a propagação de fendas, os modos de rotura final, a resistência máxima ao corte e a ductilidade da parede observados experimentalmente em compressão uniaxial e compressão-corte. Neste trabalho apresentam-se os estudos numéricos desenvolvidos que permitem avaliar a influência do nível de pré-compressão na resposta monotónica em compressão-corte e o desempenho do modelo 2D-MP na reprodução de ensaios cíclicos.
Year: 2024
Number Pages:
12p..
Author(s): Azevedo, N.; Cismasiu, I.; Pinho, F.
Editor: Universidade do Minho (UMinho)
Keywords: Cargas monotónicas e cíclicas; Modelo de partículas 2D; Modelação numérica; Ensaios de compressão-corte; Alvenaria de pedra tradicional
Info
Numerical modelling of experimental uniaxial and compression-shear tests on traditional stone masonry specimens, using 2D particle models
Stone masonry walls are the main structural elements of many historic buildings. Their restoration and preservation are a major concern given the increasing interest in the rehabilitation of built historical heritage and the implementation of preventive measures to mitigate seismic risk. The accurate structural assessment of the existing rubble stone masonry is a very complex and difficult task, due its composite and complex nature. The heterogeneity and uncertainty in material properties of its constituents, mortar and stone, the variability of the stone units positioning and geometry, among others, make its experimental characterization and accurate numerical modeling still nowadays a challenging task. In this context, the research presented aims to contribute to a better understanding of the in-plane shear behaviour of unreinforced two leaf rubble stone masonry walls, typical stone masonry of ancient buildings that are representative in Portugal.Rubble stone masonry specimens, built with traditional Portuguese construction techniques, tested experimentally under monotonic compression-shear loading conditions are here numerically evaluated, adopting a micro-modelling approach using a 2D particle model (2D-PM). In the 2D-PM model the stone and mortar elements are represented as particle assemblies that interact with each other, thus capable of representing their inherent physical and material heterogeneity. The numerical model is generated through a mapping process of the stone units and mortar joints. The experimental campaign conducted on rubble stone masonry wall specimens allowed to collect the data necessary for the calibration of the PM model parameters, namely the stone-stone and mortar-mortar elastic and strength contact properties. The validation of the 2D-PM models of the rubble stone masonry specimens under compression and combined compression-shear loading conditions is performed using the Parmac2D software. The presented results show that 2D-PM models can predict the crack propagation, the final failure modes, the maximum shear strength, and the wall ductility observed experimentally. Parametric studies are also presented that allow a better agreement between the numerical predictions and the experimental response showing the relevance of the stone-mortar interface strength properties in the overall macroscopic behaviour.
Year: 2024
Number Pages:
8p..
Author(s): Delignière, Dóris; Pinho, F.; Azevedo, N.; Cismasiu, I.
Editor: University of Cantabria & University of Oviedo
Keywords: 2D Particle Model; Numerical modelling; Shear-compression tests; Rubble stone masonry
Info
Comparative analysis of softening contact laws in particle models: application to rock and concrete
In this work three constitutive contact models that include softening are adopted for particle model fracture studies in both rock and concrete. For a single local contact, the constitutive contact model performance is initially compared in tensile, pure shear and shear tests under constant axial. Additionally, compression, direct tensile, and confined triaxial tests of quasi-britlle material discretized with spherical particles are presented and the predicted macroscopic response is compared. For a single local contact, the three contact models predict a similar behaviour. As shown, it is possible to calibrate each contact model to reproduce complex macroscopic behaviour observed in rock and concrete, but each contact model requires different contact properties or particle generation procedures.
Year: 2023
Number Pages:
12p..
Author(s): Azevedo, N.; Braga Farinha, M. L.; Oliveira, S.
Editor: International Centre for Numerical Methods in Engineering
Keywords: Concrete; Rock; Fracture; Contact laws; Discrete element; Particle modelling
Info
Discrete numerical modelling of capsule-asphalt mixture system for self-healing purposes
Asphalt mixture faces damage due to vehicle speed, repeated loads, and ultravioletradiation over time, regardless of being a self-healing material. Induced healing mechanismsare necessary to promote autonomous pavement recovery due to adverse in-service conditions,and the capsule-asphalt mixture system incorporating low-viscosity oils (rejuvenators) hasshown to be a possible solution in laboratory tests. This study aims to numerically investigatethe effect of rejuvenator-modified mastic (activated capsules) on the stiffness properties ofasphalt mixtures within the discrete element method. A three-dimensional model previouslyvalidated for rejuvenator-modified mastics with different rejuvenator-to-bitumen ratios (0, 2.5,and 10 wt%) is adopted. A generalised Kelvin contact model represents the time-dependentcontacts, and its contact parameters define the rejuvenator amount in the mastic phase. Theanalysis assesses the impact of the modified mastic amount and the rejuvenator-to-bitumenratio. Results show that the increasing modified mastic content progressively reduces themixture dynamic modulus. When the total mastic phase has rejuvenator-modified properties,the mixture stiffness modulus significantly reduces, and the phase angle performs differentlyfrom the expected (decrease with frequency) at a 10% rejuvenator-to-bitumen ratio due to theexcessively softened state, possibly compromising the pavement mechanical performance. Fora 0.30 wt% modified mastic ratio case adopting a local effect, the embedded elements do notsignificantly influence the mixture rheological properties, especially the stiffness modulus,which may be insufficient for self-healing purposes. Nevertheless, the negligible impact on thephase angle highlights the potential of the rejuvenator-modified asphalt mixture across differenttraffic and temperature conditions.
Year: 2023
Number Pages:
12p.
Author(s): Câmara, G.; Azevedo, N.; Micaelo, R.
Editor: International Centre for Numerical Methods in Engineering
Keywords: Self-healing; Asphalt Mixtures; Rejuvenator-modified Mastic; Discrete Element Method
Info
Improving asphalt discrete numerical modelling with realistic particle shapes
Micromechanical modelling based on the Discrete Element Method (DEM) has been widely used to investigate asphalt behaviour due to its ability to represent an irregular microstructure with variable-sized aggregates, bitumen and voids. The 3D rigid particle models with randomly distributed spherical particles and adopting elastic and/or simple viscoelastic models at the contacts are the standard approach, however, in recent years, a significant research effort is noted to incorporate real particle morphologies in the numerical models.In this study, a previously developed 3D DEM model of asphalt employing a generalised Kelvin contact model formulation for the viscoelastic contacts is further improved with realistic particle shapes representing the coarse aggregates. A digital library of aggregate shapes was created from the X-ray computed tomography (CT) scan of an asphalt specimen, using an adaptive image-processing method to separate the aggregates in the CT images and the Delaunay triangulation method to define the aggregate 3D surface model. Several virtual aggregates with different sizes were selected from the library to represent the coarse aggregate gradation of the modelled 3D DEM asphalt specimen. Each virtual aggregate is discretized with smaller spherical particles and its deformability is taken into account through the inner particle contacts. The numerical asphalt specimens with realistic particle shapes were submitted to uniaxial tension-compression cyclic tests to determine the stiffness properties, and the results were compared with those of the numerical specimens with all constituents represented by single spherical rigid particles. As shown, the proposed methodology greatly enhances the 3D DEM model's ability to simulate the asphalt behaviour.
Year: 2023
Number Pages:
8p..
Author(s): Micaelo, R.; Azevedo, N.; Câmara, G.
Editor: International Centre for Numerical Methods in Engineering
Keywords: Generalised Kelvin model; Realistic shape; Asphalt; DEM
Info
MODELAÇÃO NUMÉRICA E MONITORIZAÇÃO DO COMPORTAMENTO DINÂMICO DA BARRAGEM DO BAIXO SABOR
A avaliação da resposta dinâmica das obras e o acompanhamento da evolução do seu comportamento durante as várias fases da vida é muito importante, estando inserida nas atividades do controle de segurança estrutural. A barragem do Baixo Sabor possui sistemas de monitorização dinâmica em continuo e sísmica, tendo sido realizados dois ensaios de vibração forçada para duas cotas de albufeira. Foram desenvolvidos modelos numéricos incorporando o conjunto barragem-fundação-albufeira, calibrados com os resultados experimentais. Apresentam-se os resultados dos modelos numéricos desenvolvidos para vários níveis da albufeira comparando com a monitorização, durante a operação normal e a ocorrência de eventos sísmicos, verificando-se uma boa concordância.
Year: 2023
Author(s): Gomes, J. P.; Lemos, J. V.; Pereira, S.; Magalhães, F.; Cunha, A.
Editor: Comissão das Grandes Barragens do Brasil
Info
Seven years of continuous dynamic monitoring of baixo sabor dam
The Baixo Sabor dam is a 123 meters high concrete arch dam located in the north of Portu-gal. After the performance of a forced vibration test, a quite unique experimental programme was initiated in the dam during the first filling of the reservoir, with the installation of a con-tinuous dynamic monitoring system in December 2015. The implementation of such a system aimed to study the evolution of the dam
Year: 2023
Number Pages:
8p..
Author(s): Pereira, S.; Magalhães, F.; Gomes, J. P.; Cunha, A.; Lemos, J. V.
Editor: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece
Keywords: structural health monitoring; minimization of operational conditions; dam monitoring; continuous dynamic monitoring; operational modal analysis
|
Books
Info
Computational modeling of masonry structures using the discrete element method
Masonry is a combination of units such as stones, bricks or blocks usually laid in a cementitious or limemortar. It is probably the oldest material used in construction and has proven to be both simple to buildand durable. Over the years, existing masonry constructions have inevitably suffered damage with time.Earthquakes, soil settlements, material degradation and lack of maintenance are the main reasons forthat. Careful and periodic assessment of such structures is necessary in order to evaluate their structuralcapacity and safety levels. However, performing the structural analysis of masonry construction is notan easy task. A review is presented of the main models based on the discrete element method and the available related numerical techniques that have been proposed for the analysis of masonry. The essential assumptions adopted by these models and numerical implementation issues are discussed. Differences between available models are illustrated by applications to various masonry problems including static and dynamic analysis of masonry arch bridges, walls, vaults, domes and ancient colonnades.This book is composed of 17 chapters authored/co-authored by 25 outstanding researchers from 11countries (Canada, France, Greece, Hungary, Iran,Italy, Mexico, Norway, Portugal, UK, USA), whichwere reviewed by 60 referees.
Year: 2016
Number Pages:
505p.
Author(s): Sarhosis, V.; Bagi, K.; Lemos, J. V.; Milani, G.
Editor: IGI Global
Keywords: Elementos discretos; Modelação numérica; Alvenaria
Info
Contribuição de Manuel Rocha para a mecânica das rochas e as fundações de barragens
N/A
Year: 2013
Number Pages:
296pp.
Author(s): Lemos, J. V.; Lamas, L.
Editor: LNEC
Keywords: Investigação científica e técnica; Barragem de betão; Fundação rochosa; Fundação de barragem; Mecânica das rochas; Pt
|
Capítulo de Livro
Info
Chapter 5 Discrete Element Modeling
This chapter consists of two parts. First a general overview is given: the exact definition of the Discrete Element Method is provided, and the main types of existing models are introduced; then the theoretical fundaments of the most important approaches available today for masonry analysis are given. The second part of the chapter focuses on 3DEC, the most widespread commercial DEM code for masonry analysis. This second part begins with a theoretical overview. Application issues for masonry structures are then considered (block material behaviour, contact representation, structural elements like cables or bars etc.). Among the practical examples arches, barrel vaults, walls, coloumns and complete structures (like houses) are presented, including the issues of quasi-static versus dynamic analysis and of block fracture as well. The readers can find helpful advice on how to simulate their own problems most effectively.
Year: 2023
Author(s): Lemos, J. V.; Bagi, K.
: Discrete Computational Mechanics of Masonry Structures
Editor: Springer
Keywords: Masonry models
Info
Discrete Element Modelling of Masonry Arch Bridges, Arches and Vaults
N/A
Year: 2022
Author(s): Lemos, J. V.; Gobbin, F.; Forgacs, T.; Sarhosis, V.
: From Corbel Arches to Double Curvature Vaults.
Editor: Springer
Keywords: numerical modelling; masonry
Info
DEM modelling of the non-linear static and dynamic response of masonry structures
Discrete element models have become a major tool for masonry analysis, allowing a suitable representation of its discontinuous nature and marked nonlinear behaviour. The chapter reviews the fundamental assumptions of the main DEM formulations available. It focuses more specifically on the widely used UDEC and 3DEC codes, explaining their relation with the other approaches, and the most relevant issues arising in their application to masonry. Applications to the main types of structures are reviewed, considering both static and dynamic analyses. Recent research providing comparisons of the numerical models with experimental and field data is particularly covered. The discussion of the different examples is aimed at clarifying the key capabilities of DEM and demonstrating the most effective ways of using it in a variety of masonry analysis situations.
Year: 2019
Number Pages:
469-501pp.
Author(s): Sarhosis, V.; Lemos, J. V.; Bagi, K.
: Numerical Modeling of Masonry and Historical Structures - From Theory to Application
Editor: Elsevier
Keywords: DEM; Masonry structures
Info
Seismic and Structural Health Monitoring of Dams in Portugal
This chapter is focused on the Portuguese experience on the developmentand exploration of systems for continuously monitoring dam vibrations, usingaccelerometers. The pioneer system for seismic and structural health monitoring(SSHM) installed in Cabril dam (the highest Portuguese arch dam: 132 m high) isdescribed in detail. The design of this system was the result of a long-term LNECresearch program, still ongoing. These monitoring systems should include softwaredeveloped to automatically perform the analysis of collected data, including theautomatic comparison with numerical results from 3DFE models. In view of thegood results obtained with the system in operation in Cabril dam since 2008, similarsystems have been installed in other large dams in Portugal, particularly in recentlybuilt dams. Finally, Baixo Sabor dam is presented as an example of a new Portuguesedam with a complete SSHM system, in operation since 2015. Themain experimentalresults obtained for both dams are shown, namely the evolution of natural frequenciesover time, mode shapes and the measured seismic response to earthquake events.
Year: 2019
Number Pages:
87-113pp..
Author(s): Oliveira, S.; Alegre, A.
: Seismic Structural Health Monitoring - From Theory to Successful Applications
Editor: Springer
Keywords: Modal identification · Concrete dams · Ambient and seismic vibrations
|
Tese de Doutoramento
Info
Análise experimental de cenários de rotura em fundações de barragens de betão
Para verificação do cumprimento das exigências de segurança das barragens,tanto relativamente à funcionalidade (cenários correntes), como em relação àsegurança ao colapso (cenários de rotura), é essencial utilizar modelos de simulação oude interpretação (no caso de obras existentes) do seu comportamento. Estes modelossão idealizações (simplificações) da realidade, tanto no que diz respeito às acções(modelos das acções), como no que respeita à componente estrutural (modelos estruturais).A solução destes modelos, através de adequados métodos de análise, quantificaparâmetros da resposta das estruturas que permitem avaliar a sua segurança, utilizandocritérios de segurança previamente definidos.A validação destes modelos pode ser feita, no caso de cenários correntes,através da sua comparação com os resultados da observação do comportamento debarragens. No caso de cenários de rotura, não existe muita experiência de comparaçãodestes resultados com situações reais: é pequeno o número de acidentes ocorrido e,mesmo nestes, o volume de informação é reduzido. Desta forma, o recurso a métodosexperimentais, para o estudo de cenários de rotura, tem uma importância acrescida.Assim o principal objectivo deste trabalho é contribuir para melhorar a capacidade deavaliação da segurança de barragens de betão envolvendo cenários de rotura pela fundação.Neste trabalho desenvolveram-se dois ensaios experimentais em modelosfísicos: um primeiro envolvendo uma barragem abóbada, para o estudo de cenários derotura da fundação para acções estáticas; e um segundo de uma barragem gravidadeensaiado em mesa sísmica, com vista a estudar a rotura pela fundação para acçõesdinâmicas.A previsão e interpretação dos ensaios foram efectuadas com modelosmatemáticos adequados, que permitiram a sua validação e posterior utilização no estudode outros cenários.
Year: 2009
Author(s): Gomes, J. P.
Keywords: Método dos elementos discretos; Método dos elementos finitos; Modelos numéricos; Mesa sísmica; Análise dimensional; Modelos físicos; Análise até à rotura; Controlo da segurança de barragens; Barragens de betão
|
|
Relatório Científico
Info
DEMRock6m
Neste relatório apresenta-se, de forma sucinta, a descrição da atividade de investigação realizada no âmbito do projeto DEMRock6m do P2I/LNEC 2013-2020. Os resultados da atividade desenvolvida são analisados e avaliados em face dos objetivos inicialmente previstos.
Year: 2024
Author(s): Muralha, J.; Lemos, J. V.; Lamas, L.
Keywords: Estruturas de alvenaria; Barragens de betão; DEMRock6m; Mecânica das rochas; Modelos de elementos discretos; Modelos numéricos
Info
MEBAD
Neste relatório apresenta-se, de forma sucinta, a descrição da atividade de investigação realizada no âmbito do projeto MEBAD do P2I/LNEC 2013-2020, no período 2016-2023. Os resultados da atividade são analisados e avaliados, em face dos objetivos previstos.
Year: 2023
Author(s): Lemos, J. V.; Batista, A. L.; Gomes, J. P.
Keywords: Estruturas de alvenaria; Barragens de betão; MEBAD; Mecânica das rochas; Modelos de elementos discretos; Modelos numéricos
Info
RockGeoStat
Neste relatório apresenta-se, de forma sucinta, a descrição da atividade de investigação realizada no âmbito do projeto RockGeoStat do P2I/LNEC 2013-2020. Os resultados da atividade desenvolvida são analisados e avaliados em face dos objetivos inicialmente previstos.
Year: 2023
Author(s): Lamas, L.; Muralha, J.; Pereira, R.
Keywords: Modelação numérica; Heterogeneidade; Mecânica das rochas; RockGeoStat
Info
Development of DamDamage3D1.0 - A MATLAB program for non-linear analysis of arch dams using a damage model
The main goal of this report is to present DamDamage3D1.0, a 3D finite element-based program for non-linear static analysis of arch dams, developed using MATLAB. The non-linear simulations are performed using a damage law and an iterative numerical method based on the stress-transfer technique, considering the redistribution of unbalanced forces in each iteration due to material damage. The concrete
Year: 2019
Author(s): Alegre, A.; Oliveira, S.
Keywords: Non-linear behaviour; Cabril dam; Compression damage; Tension damage; DamDamage3D1.0; Damage model; Concrete strength decrease scenario; Concrete arch dams; MATLAB 3DFEM program
Info
Development of DamDamage3D1.0. A MATLAB program for non-linear analysis of arch dams using a damage model
The main goal of this report is to present DamDamage3D1.0, a 3D finite element-based program for non-linear static analysis of arch dams, developed using MATLAB. The non-linear simulations are performed using a damage law and an iterative numerical method based on the stress-transfer technique, considering the redistribution of unbalanced forces in each iteration due to material damage. The concrete
Year: 2019
Author(s): Alegre, A.; Oliveira, S.
Editor: LNEC
Keywords: DamDamage3D1.0 / MATLAB 3DFEM program / Concrete arch dams / Cabril dam / Non-linear behaviour / Concrete strength decrease scenario / Damage model / Tension damage / Compression damage
Info
Development of GDams2D 1.0 - A MATLAB code for structural analysis of gravity dams using Lagrangian finite elements with 9 nodes
In this work we present the version 1.0 of the GDams2D 1.0 program developed for 2D analysis of gravity dams using the finite element method. This initial version of the program is prepared to analyze the structural behavior of gravity dams for static loads, considering linear-elastic behavior, and using Lagrange finite elements of 4 sides, with 9 nodal points. The GDams2D 1.0 program, developed in MATLAB, includes a module for automatic generation of meshes with a great level of refinement (generated from coarse meshes of quadrilaterals, with 4 nodal points at the vertices) and is designed for easy adaptation to non-linear analyzes, using stress-transfer modules such as those recently developed for the DamSlide3D and DamDamage3D programs. After a brief reference to the fundamentals of solid mechanics and to the simplified hypotheses of plane elasticity, the Fundamentals of the Finite Element Method (FEM) are presented, referring in particular the formulation of the four-node, linear and isoparametric, finite element (FE4nos), with two translation d.o.f per node, and the quadrangular FEs of 9 nodes (FE9nos) used in GDams2D 1.0. Based on some examples of application to simple 2D structures whose response is knownanalytically, the advantages of FEs are emphasized in relation to FE4nos and the verification and operability of GDams2D 1.0 is made using various discretizations. Finally, the case of a gravity dam (25 m high) is presented. The dam
Year: 2019
Author(s): Rodrigues, M.; Oliveira, S.
Keywords: Solid mechanics; p-refinement and h-refinement; Gravity dams; 2D Lagrangian finite elements; FEM convergence; Linear-elastic behavior
Info
Structural analysis of gravity dams considering non-linear behavior in the dam-foundation interface - Development of a 3DFE code using MATLAB: DamSlide3D
The main objective of this work is the development and presentation of a three-dimensional finite element program, DamSlide3D, to study the behavior of gravity dams for scenarios of sliding through the dam-foundation interface. The DamSlide3D, developed using MATLAB, includes cube-type finite elements with 20 nodal points ("serendipity") and finite interface elements with 16 nodal points (joint elements). Initially, we present the fundamental equations of Solid Mechanics, referring to the main simplified hypotheses considered in the computationally implemented formulation, which is presented mathematically as a problem of boundary values using a displacement formulation. For the structure body and for the foundation, the hypothesis of isotropic materials with linear elastic behavior is assumed and for the interfaces the hypothesis of non-linear behavior is considered using the Mohr- Coulomb criterion. The DamSlide3D input data is provided in an excel file and includes structure geometry data, material properties, support conditions and load parameters. As output, the program graphically displays the stress field (principal stresses) and the displacement field (deformed structure). The program was verified throughout three numerical tests with known theoretical solutions. In these tests a simple structure was used, composed by a column discretized in 3DFE. At the contact surface between the column and the base (horizontal surface) it was considered an interface discretized using joint finite elements. A plane surface that crosses the column with a given slope is also considered, discretized using the same type of joint finite elements. In the first test, the field of elastic stresses at the base, due to self-weight (SW) and hydrostatic pressure (HP), was compared with the theoretical results. In the second test the nonlinear column response was studied for different values of thefriction angle at the inclined interface (in this test the structure is only submitted to SW). In the third test, for the main SW + HP loads, the stability of the column is studied for a variation of the friction angle, and for a variation of the water level. In these three numerical tests the results were always consistent with the theoretical solutions. Finally, as an example of application, a gravity dam structural behavior was analyzed considering the non-linear behavior in the dam-foundation interface. The dam was subjected to self-weight and hydrostatic pressure. A parametric study was developed in order to study the dam stability for differentvalues of water level and friction angle.
Year: 2019
Author(s): Rodrigues, M.; Oliveira, S.
Keywords: Dam-foundation interface friction angle; Gravity dam; Mohr-Coulomb failure criterion; Stress-transfer; Interface non-linear behavior; Joint finite elements; 3D solid finite elements
Info
CoMatFail
Neste relatório apresenta-se, de forma sucinta, a descrição da atividade de investigação realizada no âmbito do projeto CoMatFail até ao final de 2017. É feita a apreciação da atividade desenvolvida, nomeadamente quanto ao grau de cumprimento do plano de trabalhos, bem como dos objetivos específicos e dos indicadores de desempenho propostos na ficha de projeto. São ainda referidas as aplicações dos resultados da investigação em trabalhos contratados ao LNEC e as candidaturas a financiamento externo desenvolvidas no âmbito do projeto. Inclui-se em anexo a ficha do projeto atualizada, que contempla a revisão do plano de trabalhos.
Year: 2018
Author(s): Dias, I. M.; Lemos, J. V.; Mata, J.
Keywords: Análise até à rotura; Controlo de segurança; CoMatFail; Barragens de betão; Modelação numérica; Fratura material
Info
DEMRock6m
Neste relatório apresenta-se de forma sucinta a descrição da atividade de investigação realizada no âmbito do projeto DEMRock6m no período 2016-2017. Os resultados da atividade são analisados e avaliados em face dos objetivos inicialmente previstos, sendo proposta uma revisão do plano de atividades para os próximos três anos.
Year: 2018
Author(s): Muralha, J.; Lemos, J. V.; Espada, M.; Lamas, L.
Keywords: Estruturas de alvenaria; Barragens de betão; DEMRock6m; Mecânica das rochas; Modelos de elementos discretos; Modelos numéricos
Info
RockGeoStat
Neste relatório apresenta-se, de forma sucinta, a descrição da atividade de investigação realizada no âmbito do projeto RockGeoStat no período 2016-2017. Os resultados da atividade são analisados e avaliados em face dos objetivos inicialmente previstos, sendo proposto um prolongamento do projeto até ao final de 2018.
Year: 2018
Author(s): Lamas, L.; Muralha, J.; Espada, M.
Keywords: Modelação numérica; Heterogeneidade; Mecânica das rochas; RockGeoStat
|
ICT
Info
Identification of transversely isotropic parameters in overcored rock specimens - A back analysis approach
This document presents a back analysis procedure for identification of the elastic parameters of transversely isotropic rock cores, containing an overcoring triaxial strain probe, from the strains measured during a biaxial test. A three-dimensional finite element model was developed to simulate the biaxial test on the overcored rock specimen and to compute the strains at the location of the strain gauges. Different optimisation algorithms were tested and the most suitable one was selected. The back analysis procedure was tested for identification of the five elastic parameters and the two orientation angles that characterise a transversely isotropic rock core. In spite that, with the developed methodology, convergence was reached and all those parameters could be identified, sensitivity analyses demonstrated that the results obtained were not stable and therefore they were not reliable. By introducing constrains based on common practice and previous experience, a stable and robust methodology was achieved: the three elastic parameters, E1, E2 and ?2, are reliably identified using the value of G2 calculated with Saint-Venants expression and a fixed value of ?1, while the orientation parameters are obtained from observation of overcored rock. Analysis of the results shows that application of this methodology represents an enormous step forward when compared with the traditional use of isotropy. Besides, the methodology is general and can also be used with other types of overcoring equipment. The five elastic parameters and the two orientation angles obtained can then be used, together with the overcoring strains, to compute the complete in situ state of stress.
Year: 2018
Author(s): Espada, M.; Lamas, L.
Keywords: Transversely isotropic rock; Numerical method; Rock test; Optimisation; Triaxial strain probe; In situ stress; Overcoring; Biaxial test
Info
Stability analysis of excavation slopes of Baihetan arch dam foundation - Reliability analysis by application of the response surface method
This document presents the work developed by the PhD student Margarida Espada in the scope of the course unit Risk Analysis in Geotechnical Works of the Doctoral Program in Civil Engineering of the Faculty of Engineering of the University of Porto (FEUP). This work presents a reliability analysis, using the response surface method (RSM), for the case study of the left bank excavation slopes of the Baihetan arch dam foundation, which is one of the case studies of Margarida Espada's PhD thesis. The aim was to approximate an implicit limit state function by computing safety factors, using a discrete element model of the Baihetan left bank developed in 3DEC software, where the shear strength parameters of two important rock discontinuities were considered as random variables. The probability of failure was then obtained through an iterative process, using approximation methods. This work presents the 3DEC model developed to analyse the stability conditions in the Baihetan left bank and the results of the reliability analysis.
Year: 2018
Author(s): Espada, M.
Keywords: Dam foundation; Baihetan dam; Discrete element method; Reliability; Slopes stability
Info
Contribuição para o problema da existência e suavidade da solução da equação de Navier- Stokes
O problema da solução das equações de Navier Stokes é abordado neste trabalhopropondo-se uma técnica de representação das incógnitas deslocamentos e pressõesvariáveis no espaço e no tempo em série de Delta de Dirac e suas derivadas no tempocujos coeficientes se determinam com base na solução de sistemas de equaçõesdiferenciais definidos no espaço (problema com três variáveis espaciais independentesque pode ser estudado pelo método de Monge).
Year: 2011
Number Pages:
12pp.
Author(s): Câmara, R.
Editor: LNEC
Keywords: Equação de navier-stokes
Info
Elastodinâmica
Neste relatório apresentam-se as equações básicas da elastodinâmica linear, as soluçõesfundamentais e o teorema da representação no domínio de tempo e de frequência.Para movimentos finitos de casca formula-se o teorema dos trabalhos virtuais e a suaimplementação pelo método dos elementos finitos.
Year: 2007
Number Pages:
54pp.
Author(s): Câmara, R.
Editor: LNEC
Keywords: Método dos elementos finitos; Elastodinâmica
Info
Modelação sísmica de barragens abóboda
Neste relatório apresentam-se os principais aspectos da modelação sísmica de barragensabóbada. Assim propõe-se: modelos numéricos de geração de sismos por uma falha; aforma como o sismo actua na barragem; modelos para estudar a influência da albufeirana vibração do conjunto; métodos para solução das equações do movimento; e novasformulações de elementos finitos para o problema estrutural.
Year: 2005
Number Pages:
72pp.
Author(s): Câmara, R.
Editor: LNEC
Keywords: Método dos elementos finitos; Simulação numérica; Comportamento sísmico de estruturas; Comportamento de barragens; Barragem abóboda
Info
An experimental and numerical study for analysis of the hydromechanical behavior of the Alto Lindoso high pressure circuit
In pressure tunnels and shafts, in addition to the mechanical effect that excavation has on the rock mass and the disturbance that it introduces in the water flow, also the contained water can interact from the mechanical and hydraulic points of view with the rock mass. Seepage in fractured rock masses is dominated by the flow that takes place through the joints, and this is highly d(;pendent on their properties, namely aperture and roughness. Joint aperture, in tum, i::; very sensitive to stress changes. Special attention must therefore be paid to the joints in hydromechanical analyses. In this report are presented some studies that were carried out for the hydromechanical characterization of joints of the Alto Lindoso rock mass and numerical simulations of the hydromechanical behaviour of two selected sections of the high pressure circuit.
Year: 1994
Author(s): Lamas, L.
Keywords: Simulação numérica; Barragem de Alto Lindoso; Percolação no solo; Maciço rochoso; Comportamento hidromecânico; Interacção solo-água-estrutura; Circuito hidráulico
|
|
|